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ABSTRACT 

In order to maximize crop output and reduce environmental damage, sustainable agriculture methods are 
crucial. The pyrolysis of organic materials produces biochar, a carbon-rich byproduct that has generated 
a lot of attention due to its potential to enhance soil health, boost agricultural productivity, and aid in 
climate change mitigation. The feedstock supply, pyrolysis conditions, and soil properties all affect how 
effective biochar is. Waste valorization is possible through the manufacture of biochar from invasive 
plants like lantana, animal waste, forest litter, and agricultural wastes. Therefore, adding biochar to 
agricultural systems can reduce environmental issues while increasing crop output and soil sustainability. 
By decreasing the bulk density of soil, increasing microbial activity, pH, water-holding capacity, and 
improving nutrient retention, the use of biochar lessens the need for inorganic fertilizers. Biochar greatly 
increases soil fertility and crop production by enriching the soil with vital elements including 
phosphorus, potassium, nitrogen, and organic carbon. It is a sustainable way to enhance soil health 
because it also helps with pollution immobilization and carbon sequestration. The function of biochar in 
altering the physical, chemical, and biological characteristics of soil and the impact of these 
modifications on crop productivity are also covered in this study. Ultimately, biochar is demonstrated as 
a potentially helpful tool for improving soil quality and promoting ecologically friendly farming 
methods. 
Keywords : amendment, biochar, crop productivity, feedstock, microbial activity, pyrolysis. 

  

 
Introduction 

In agriculture, producing enough food while 
reducing the negative effects on the environment is still 
a major problem. Applying inputs at the right rates and 
using sustainable fertilizer management techniques are 
essential to achieve this (Shanmugavel et al., 2023). 
Biochar is one such technique that has shown promise 
in enhancing soil health and raising crop yields. It has 
gained significant attention in recent years for its 
potential benefits in agriculture, climate change 
mitigation, energy production, and environmental 
sustainability (Bano et al., 2025). Its capacity to adsorb 
different substances is influenced by factors such as 
particle size, surface features, and pore structure (Tan 
et al., 2015). The wide range of biochar applications 
can be credited to its unique properties, including 

surface functional groups, high thermal stability, cation 
exchange capacity, heat retention ability, extensive 
surface area, good permeability, electrical 
conductivity, and high fixed carbon content. These 
characteristics have contributed to its value and use 
across various fields over time (Wang et al., 2019). 

Peter Read coined the word "biochar" to describe 
a fine-grained, porous substance that is rich in carbon 
that is created when plant biomass is thermally broken 
down (Ahmed et al., 2014). This process, called 
pyrolysis, takes place in an oxygen-limited atmosphere 
at low temperatures (about 350–600°C) (Zhang et al., 
2019). Under these circumstances, organic matter 
breaks down thermally rather than burning to produce 
biochar. It is produced artificially utilizing 
contemporary pyrolysis technologies as well as 
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organically through wildfires (Mohanty et al., 2018). A 
stable, porous substance that affects several soil 
qualities is the end result. Biochar changes the physical 
characteristics of soil, including its moisture content, 
oxygen availability, and ability to retain water. While 
fostering biological elements like microbial population, 
diversity, and their activity. Additionally, biochar can 
raise soil pH (Zhang et al., 2019) and improve the 
soil's ability to retain water and nutrients (Krause et al., 
2016). Biochar offers advantages such as nutritional 
enrichment and lessens reliance on inorganic fertilizers 
by delivering vital nutrients (Bird et al., 2011). It also 
helps in carbon sequestration and pollutant 
immobilization (Gul et al., 2015). 

Applying biochar to agricultural soils increases 
crop output by promoting the storage of necessary 
elements and improving fertility (Marris, 2006). 
Because biochar increases the availability of nutrients 
including phosphorus (P), potassium (K), magnesium 
(Mg), calcium (Ca), sodium (Na), nitrogen (N), total 
carbon (C), and organic carbon (OC), it is especially 
advantageous for soils with limited ion-retention 
capacity (Chan et al., 2007).). The kind and extent of 
these alterations in soil properties affects the growth of 
crop in biochar amended soils (Jeffery et al. 2017). 

Crop leftovers, forest litter, animal waste, and 
invasive weeds like lantana, which, despite its quick 
growth, currently has no useful uses—can all be used 
as feedstock for the synthesis of biochar. Pyrolysis is 
an effective technique for turning these organic 
resources into biochar. The kind of feedstock utilized 
and the production circumstances determine the 
particular characteristics of biochar as well as its 
possible uses. 

International Biochar Initiative (IBI) 

Biochar is a solid that is created by carbonizing 
biomass, according to the International Biochar 
Initiative (IBI) (Lehmann, 2007). Biochar may be used 
as a carbon sink or modification to lower greenhouse 
carbon dioxide (CO2) emissions from decaying 
biomass (Brewer et al., 2009; Lehmann et al., 2011). 

One example that made biochar popular was the 
theory that the Amazonian inhabitants used it, along 
with other organic and household wastes, over 
generations to transform the surface soil horizon into 
Terra Preta, an extremely productive and rich soil. 
Biochar's role in soil-building processes has piqued the 
curiosity of many people (Lehmann et al., 2011). 

Feedstocks for Biochar Production 

The kind of the pretreatment procedure and the 
overall effectiveness of the biochar manufacturing 

process are greatly impacted by the feedstock type 
(Amarasinghe et al., 2016). Wood, fruit shells, 
agricultural leftovers such stems, leaves, and seed 
pods, green manure, sewage sludge, industrial and 
municipal waste, and farm outputs are just a few of the 
many biomass feedstocks that may be utilized to make 
biochar (Duku et al., 2011; Wang et al., 2018). Algae 
biomass has also become a sustainable feedstock 
because of its high nitrogen content and ion exchange 
capability. It produces biochar, which is a useful soil 
amendment in agriculture (Yu et al., 2017). 

Instead of being used directly as fertilizer, biochar 
made from plant-based feedstocks is frequently 
appreciated as a soil conditioner (Uchimiya et al., 
2010). When choosing feedstocks, other factors to take 
into account include their price, accessibility, and lack 
of contaminants such heavy metals (Rondon et al., 
2007). As a result, selecting the appropriate feedstock 
is essential in guaranteeing that biochar will work as 
intended. 

Features of Biochar 

The importance of biochar is significantly 
influenced by its chemical and physical characteristics. 
To comprehend its interactions in soil and assess its 
possible advantages, proper characterisation is crucial. 
Important characteristics of biochar, including as pH, 
ash content, water-holding capacity, bulk density, pore 
volume, and surface area, are greatly influenced by the 
quality of the feedstock utilized (Hernandez-Mena et 

al., 2014). 

Furthermore, two important variables affecting the 
physicochemical characteristics of biochar are the 
pyrolysis temperature and time (Tag et al., 2016). For 
example, biochar's surface area increases with increase 
in pyrolysis temperatures (Ahmad et al., 2012; Zhang 
et al., 2015). Accordingly, choosing the right pyrolysis 
temperature necessitates striking a balance between 
surface features and chemical properties (Chatterjee et 

al., 2020). 

The ideal temperature range for producing biochar 
is usually 500 to 800°C. Biochar that controls nutrient 
release is produced at lower pyrolysis temperatures, 
while biochar that resembles activated carbon is 
produced at higher temperatures (Day et al., 2005; 
Ogawa et al., 2006; Chan et al., 2008). It is important 
to keep in mind, though, that low-temperature biochar 
could have hydrophobic surfaces, which could lower 
the soil's ability to retain water. 

Biochar Preparation  

Biochar is produced and prepared using a variety 
of procedures (Figure 1), such as (i) pyrolysis, (ii) 
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microwave carbonization, (iii) hydrothermal 
carbonization, and (iv) torrefaction, all of which make 
use of various heating methods. The thermochemical 
breakdown of biomass in a low-oxygen (O2) 
atmosphere is known as pyrolysis (Demirbas and Arin, 
2002). Three forms of pyrolysis are distinguished by 
temperature and duration: slow, transitional, and rapid 
pyrolysis (Tripathi et al., 2016). Slow and transitional 
pyrolysis have prolonged dwelling durations, spanning 
from minutes to many hours or even days, which 
makes them appropriate for producing biochar, 
whereas rapid pyrolysis has a relatively limited 
retention time. 

 
Fig. 1 : Biochar Preparation Techniques 

The stability of biochar is significantly influenced 
by the temperature during pyrolysis. Biochar produced 
at temperatures higher than 500°C usually has half-
lives of more than a millennium (Ippolito et al., 2020). 
As the pyrolysis temperature rises, changes in 
elemental composition may be seen, including the 
ratios of carbon (C), hydrogen (H), oxygen (O), and 
nitrogen (N) (Wang et al., 2018). According to 
Domingues et al. (2017), increasing the pyrolysis 
temperature from 350°C and 450°C to 750°C lowers 
the cation exchange capacity (CEC), which in turn 
lowers the nutrient-rich biochar's adsorptive ability. 

Furthermore, it has been discovered that greater 
pyrolysis temperatures increase the amount of ash in 
biochar while decreasing its surface area and pore 
volume (Rafiq et al., 2016). In conclusion, temperature 
has a significant impact on the content, structure, and 
functional groups of biochar. Thus, choosing the right 
pyrolysis temperature is crucial for preparing biochar 
of superior quality. 

 
Fig. 2 : Diagram of the pyrolysis process 

The physical, chemical, and biological 

characteristics of biochar 

Physical Characteristics 

According to Shenbagavalli and Mahimairaja 
(2012), biochar is a stable, carbon-rich substance that 
may persist in soil for thousands of years. Its 
effectiveness as a soil amendment for enhancing soil 
health and sequestering carbon is determined by the 
kind of feedstock utilized and the pyrolysis method, 
both of which have a substantial impact on its 
characteristics. The physical characteristics of biochar 
have several positive effects on the environment, such 
as raising the pH of the soil, improving moisture 
retention, encouraging the growth of helpful microbes, 
boosting cation exchange capacity (CEC), and 
conserving soil nutrients (Sohi et al., 2010). All of 
these procedures work together to enhance the fertility 
and condition of the soil (Ajema, 2018). 

Biochar changes the physical and chemical 
characteristics of soil, reducing bulk density and 
compaction, improving aeration and CEC, and 
changing the texture and structure of the soil. 
Additionally, it makes it easier to restore deteriorated 
soils. In comparison to other organic components in 
soil, its large surface area, negative surface charge, and 
charge density make it more efficient at absorbing 
cations per unit of carbon, which can increase crop 
yields (Liang et al., 2006; Lehmann, 2007). 

Depending on the makeup and interactions of 
minerals and organic matter, biochar can have both 
direct and indirect effects on soil processes. It changes 
the physical properties of soil, including density, 
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packing, particle size, surface area, and pore size 
distribution. These modifications affect the texture, 
structure, porosity, and consistency of the soil, which 
affects the passage of water and air in the root zone 
and, in turn, the development of plants (Blanco-
Canqui, 2017). In addition to improving soil 
permeability, aggregation, and workability, biochar's 
porous structure helps retain moisture, which makes it 
especially helpful in areas that are prone to drought. 
Acidic soils are neutralized by its alkaline properties, 
which removes restrictions on plant development 
(Hammes and Schmidt, 2009). 

Furthermore, biochar may trap CO2 and O2 in its 
porous structure or adsorb them on its surface, 
allowing gasses, microorganisms, and nutrients to be 
retained. By doing this, nutrient leakage into water 
bodies is decreased, protecting the ecosystem and 
maintaining soil health. 

Chemical Properties By enhancing nutrient 
retention and lowering acidity through its liming 
activity, which elevates soil pH, biochar improves soil 
fertility (Lehmann et al., 2006). It increases soil 
productivity by adding minerals like potassium (K), 
phosphorus (P), and micronutrients, or by retaining 
nutrients from other sources. Even though biochar by 
itself doesn't always have enough nutrients, it can help 
crops perform better when combined with either 
organic or inorganic fertilizers. 

The delayed release of nutrients like carbon (C), 
nitrogen (N), calcium (Ca), magnesium (Mg), 
potassium (K), and phosphorus (P) that biochar 
provides is one of its most advantageous qualities since 
it enables plants to obtain nutrients over a longer 
period of time (DeLuca et al., 2015). This gradual 
release lowers nutrient leaching, lessens agricultural 
contamination, and eliminates the need for regular 
fertilizer treatments. The negative environmental 
consequences of chemical fertilizers and pesticides are 
also lessened by biochar's capacity to store nutrients 
(Cao et al., 2018). 

A wide variety of species, such as bacteria, 
fungus, protozoa, nematodes, arthropods, and 
earthworms, are supported by healthy soil. These 
species find a home in biochar, which boosts 
biodiversity and soil microbial activity (Slapakova et 

al., 2018). By providing a haven for beneficial fungi 
like arbuscular mycorrhizal fungi and microbial 
communities, the micropores of biochar lessen 
saprophyte competition and improve nutrient exchange 
between fungus and plants (Saito and Marumoto, 
2002). 

According to Krull et al. (2003), biochar's 
stubborn character allows it to endure in soil for 
thousands of years, with estimations ranging from 
1,000 to 10,000 years and an average of about 5,000 
years. However, because of its intricate structure, 
evaluating its long-term stability is challenging 
(Lehmann et al., 2006). 

Additionally, biochar offers a haven for microbial 
inoculants such Bacillus thuringiensis, Azospirillum 
sp., Azotobacter sp., and Glomus fasciculatum, 
Rhizobium sp., Trichoderma viride, Pseudomonas 

fluorescens, and mosseae (Hazarika and Ansari, 2007). 
Biochar increases nutrient absorption and stimulates 
plant development by cultivating symbiotic 
interactions between fungus and plants, especially 
mycorrhizal fungi. It is a useful tool for sustainable soil 
management because of its porous nature, which 
facilitates these interactions (Glaser, 2007). 

Biochar's Impact on Soil Properties 

Effects of biochar on various soil properties viz., 
physical, chemical and biological is illustrated in figure 
3. 

Impact on soil physical properties 

Impact on Soil Porosity 

It has been demonstrated that applying biochar 
improves soil porosity; however, the degree of 
improvement varies depending on the kind of biochar 
and the soil (Herath et al., 2013). Soil aeration, heat 
transmission, and water flow are all improved by 
increased porosity (Omondi et al., 2016). Overall soil 
porosity is influenced by the relative contributions of 
macro, micro, and mesopores, which differ based on 
the type of soil and biochar (Githinji, 2014). Biochar 
decreases saturated hydraulic conductivity (Ksat) and 
enhances water retention in sandy soils while 
increasing Ksat in clayey soils to minimize runoff 
(Edeh et al., 2020). 

Impact on Bulk Density of Soil (BD) 

Applying biochar has been shown to dramatically 
lower soil bulk density; the more biochar applied, the 
larger the reductions (Herath et al., 2013; Githinji, 
2014). According to Liu et al. (2016), there is a 
negative association between the addition of biochar 
and soil BD, meaning that BD falls as biochar 
concentration rises. Reducing BD can have positive 
agronomic effects as it has a direct impact on soil 
health, crop productivity, and plant development 
(Githinji, 2014). 
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Impact on the Aggregation of Soils 

Because of its interactions with soil mineral 
particles, biochar especially when produced at lower 
temperatures plays a critical role in encouraging the 
development of soil aggregates (Brodowski et al., 
2005). According to Briggs et al. (2012), biochar 
carbon affects soil aggregation and associated 
processes by interacting with both organic and 
inorganic soil components. It has been demonstrated 

that biochar improves wet aggregate stability, 
especially in sandy soils. According to Burrell et al. 
(2016), its organic particles enhance the bonding of 
bigger particles, which leads to soil aggregation in 
coarse-textured soils as opposed to fine-textured soils. 
Furthermore, biological, chemical, and physical 
processes can cause biochar particles to surround 
inorganic soil aggregates with a carbon-rich core (Hua 
et al., 2014). 

 

 
Fig. 3 : Biochar's impact on different soil characteristics 

 

Impact of Applying Biochar on Chemical 

Characteristics 

Biochar is a good soil amendment because it 
significantly affects the chemical characteristics of the 
soil (Lehmann et al., 2011). Biochar's high pH makes it 
an excellent way to improve the pH of soil, especially 
in acidic soils (Song et al., 2018). Ash content is the 
main cause of this pH rise as it raises the pyrolysis 
temperature and mineral makeup of the feedstock used 
to make biochar (Rafiq et al., 2016). 

Additionally, the use of biochar has been 
associated with increased soil carbon reserves, which 
can improve soil fertility, promote carbon 
sequestration, improve nutrient retention, and 
temporarily stimulate native organic carbon 
mineralization (positive priming) all of which can 
result in increased crop yields (Ouyang et al., 2014). 
After applying biochar for four years, Zhan et al. 
(2015) found that the soil's total nitrogen (N) increased 
by 27.5%, its carbon (C) content grew by 75.5%, and 
its peanut yield improved by 50.5%. According to a 
number of studies, biochar can increase nitrogen 

retention, decrease N leaching, and raise the total 
amount of nitrogen in soil (Major et al., 2012). 
Because of its porous structure, nitrate and ammonium 
may be adsorbed, enhancing nitrogen immobilization 
and decreasing ammonium volatilization, which 
increases the amount of nitrogen available for plant 
development (Rondon et al., 2007). 

Additionally, biochar contributes to the recycling 
of phosphorus (P) from sewage sludge and manure, 
two agricultural wastes. Increased soil P availability is 
a result of the high phosphorus concentration of 
biochar's ash (Major et al., 2012; Zhai et al., 2015). 
Nevertheless, the type of soil affects the availability of 
phosphorus; biochar increases P availability in acidic 
soils but may decrease it in alkaline soils because of 
enhanced sorption (Chintala et al., 2014). 

Furthermore, it has been discovered that applying 
biochar improves the cation exchange capacity (CEC) 
of soil. According to Major et al. (2012), this 
improvement is usually followed by a decrease in 
acidic cations and an increase in basic cations, which 
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influences nutrient availability and may result in 
increased soil productivity. 

Impact of Applying Biochar on Biological 

Characteristics 

Microbial activity has been a major focus of the 
extensive research on the effects of biochar on soil 
microbial populations. Biochar can improve microbial 
populations by interacting with minerals and soil 
organic matter (Zhang et al., 2014; Pokharel et al., 
2020). It is also a useful technique for enhancing soil 
carbon sinks because to its resilience to degradation 
and capacity to lower CO2 emissions from soil organic 
matter. By altering the availability of carbon, nitrogen, 
and other soil characteristics, biochar changes the 
biomass composition and microbial population (Zhang 
et al., 2014). 

Although the effects of biochar might differ based 
on the kind of soil and application rate, its enormous 
surface area creates an environment that encourages 
enzymatic activity. Biochar, a labile carbon source, 
stimulates microbial activity, which raises the activity 
of soil enzymes (Ouyang et al., 2014). However, 
research has indicated that phosphomonoesterase 
activity can be decreased by applying biochar that 
contains a large amount of inorganic phosphorus (Zhai 
et al., 2015). According to Karhu et al. (2011), biochar 
generally creates an environment that is conducive to 
microbial populations, which increases the biological 
activity of soil. 

Four main ways that biochar affects mycorrhizal 
associations were described by Warnock et al. (2007): 
(i) changing nutrient availability by modifying soil 
properties; (ii) affecting interactions between soil 
microbes; (iii) detoxifying allelochemicals; and (iv) 
offering defense against soil predators. Numerous 
studies have reported increased mycorrhizal 
colonization (Yamato et al., 2006; Solaiman et al., 
2010; Shen et al., 2016). Applying biochar has been 
demonstrated to improve soil fertility and agricultural 
yield, especially in nutrient-deficient soils (Xie et al., 
2013). The impacts on production in extremely rich 
soils, however, vary; some studies even show growth 
restriction. The kind of biochar feedstock and the 
properties of the soil both affect how biochar affects 
mycorrhizal relationships. 

Soil fauna is also impacted by biochar. The 
precise consequences of ingested biochar inside 
earthworm systems are yet unknown, although 
earthworms, for instance, may consume it while they 
dig and eat. Depending on the kind of soil and the 
properties of the feedstock, the reactions of soil fauna 

to the addition of biochar might range from neutral to 
positive or negative (Lehmann et al., 2011). 

Effect of Biochar on Crop Productivity  

The forms of biochar dust, fine particles, and 
coarse grains as well as the application techniques 
surface application, top dressing, and drilling are the 
two primary factors affecting the influence of biochar 
on crop productivity. When assessing how biochar 
affects crop performance and soil health, these 
variables are crucial. Different levels of ash, which is 
high in minerals that promote plant development, are 
present in fresh biochar. This offers a temporary 
benefit, allowing ash-rich biochar to be used as 
fertilizer in the early phases until the mineral content is 
exhausted. Research has indicated that the use of 
biochar has a considerable impact on grain yield, dry 
matter output, and net primary crop production (Chan 
et al., 2008). The kind of soil and how biochar is 
modified determine how successful it is. According to 
El-Naggar et al. (2019), biochar typically exhibits 
higher efficiency in medium-to-low fertility soils 
compared to extremely fertile soils, leading to 
considerable improvements in agricultural output. 

In a multi-year study using a soybean (Glycine 

max L.) and maize (Zea mays L.) cropping system, 
Major et al. (2010) found that applying 20 t ha-1 of 
biochar did not increase maize yield in the first year. In 
contrast to the control, yield increases of 28%, 30%, 
and 140% were seen in the following three years. 
Similar findings were made by Park et al. (2011), who 
discovered that adding biochar at a rate of 1% (w/w) 
considerably raised the dry biomass of Indian mustard 
by 672% for roots and 452% for shoots. Chemically 
modified chicken manure was the source of the biochar 
that was utilized. These gains were ascribed to 
improved nutritional availability, especially potassium 
(K) and phosphorus (P), and decreased toxicity from 
lead (Pb) and copper (Cu). 

Biochar for Carbon Sequestration and Climate 

Change Mitigation 

Capturing and storing carbon to stop its escape 
into the atmosphere is known as carbon sequestration 
(Duku et al., 2011; Hu et al., 2020). Long-term carbon 
storage and soil improvement are two advantages of 
applying biochar to soils (Tenenbaum, 2009; Ennis et 

al., 2012). Biochar is a promising tool for carbon 
sequestration due to its ability to remain stable in the 
soil for hundreds or even thousands of years (Yin et 

al., 2022). Additionally, biochar helps mitigate climate 
change by lowering emissions of nitrous oxide (N₂O) 
and methane (CH₄) from agricultural soils (Gupta et 

al., 2020). Compared to combustion (3%) and 
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biological degradation (10–20% after 5–10 years), 
biochar maintains more than 50% of the carbon from 
its initial biomass (Lehmann et al., 2006). 

The lifespan and nutrient-retention qualities of 
biochar make it unique. Because it doesn't break down, 
it improves soil fertility and structure over time. 
Furthermore, according to Mensah and Frimpong 
(2018), biochar dramatically improves soil pH, 
moisture retention, cation exchange capacity (CEC), 
and microbial activity.  

Zhang et al. (2010) showed how biochar can 
lower emissions of CH4 and N2O, two major causes of 
global warming. Additionally, biochar applications 
(2% to 60% by weight) decreased CO2 emissions, 
lowered N2O generation (beyond 20% application 
rates), and enhanced methane oxidation, according to 
Spokas et al. (2009). 

Additionally, biochar has disease-suppressive 
qualities that may help reduce pathogen-caused soil-
borne illnesses. This suppression process is aided by 
calcium compounds and enhancements to the physical, 
chemical, and biological characteristics of the soil 
(Ogawa, 2009). Research has demonstrated the 
efficacy of biochar in combating airborne and soil-
borne illnesses such powdery mildew, Botrytis cinerea, 
and Rhizoctonia solani, as well as Fusarium species 
and Phytophthora (Bonanomi et al., 2015). For 
example, using biochar made from citrus wood 
improved crops like strawberries (Fragaria × 

ananassa), peppers (Capsicum annuum), and tomatoes 
(Lycopersicon esculentum) resistance to gray mold 
(Botrytis cinerea). 

Despite the paucity of studies on biochar's ability 
to inhibit soil-borne pathogens, Elmer et al. (2010) 
found that it may be able to manage certain illnesses. 
For instance, at treatment rates of 0.32%, 1.60%, and 
3.20% (w/w), biochar decreased root rot disease and 
enhanced plant biomass in asparagus soils afflicted 
with Fusarium. Likewise, Fusarium root rot in 
asparagus crops has been successfully prevented by 
using charcoal enhanced with mycorrhizal fungus 
(Thies and Rillig, 2009). 

Biochar is a promising and versatile approach to 
improving soil health, encouraging sustainable 
agriculture, and tackling environmental issues like 
climate change. By improving soil fertility, structure, 
and water retention, its application increases crop 
yields while lowering the demand for inorganic 
fertilizers. Furthermore, biochar is an essential strategy 
for reducing greenhouse gas emissions because of its 
capacity to store carbon in the soil. However, 
addressing obstacles pertaining to production prices, 

application methods, and regional variations in efficacy 
is necessary before it can be widely used. To maximize 
biochar synthesis and application techniques for 
various agricultural systems, more research and 
development is required. All things considered, biochar 
has a great deal of promise for incorporating into 
sustainable farming methods and enhancing 
agricultural and environmental resilience over the long 
run. 
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