

BIOCHAR: A SUPER AMENDMENT FOR SOIL HEALTH AND SUSTAINABILITY

Ankita Sharma*, Rakesh Sharma and Arushi

Department of Soil Science and Water Management, College of Horticulture & Forestry
(Dr. Y.S. Parmar University of Horticulture & Forestry), Neri, Hamirpur, H.P. 171001, India

*Corresponding author E-mail: sharmaankita2828@gmail.com

(Date of Receiving : 20-10-2025; Date of Acceptance : 01-01-2026)

In order to maximize crop output and reduce environmental damage, sustainable agriculture methods are crucial. The pyrolysis of organic materials produces biochar, a carbon-rich byproduct that has generated a lot of attention due to its potential to enhance soil health, boost agricultural productivity, and aid in climate change mitigation. The feedstock supply, pyrolysis conditions, and soil properties all affect how effective biochar is. Waste valorization is possible through the manufacture of biochar from invasive plants like lantana, animal waste, forest litter, and agricultural wastes. Therefore, adding biochar to agricultural systems can reduce environmental issues while increasing crop output and soil sustainability. By decreasing the bulk density of soil, increasing microbial activity, pH, water-holding capacity, and improving nutrient retention, the use of biochar lessens the need for inorganic fertilizers. Biochar greatly increases soil fertility and crop production by enriching the soil with vital elements including phosphorus, potassium, nitrogen, and organic carbon. It is a sustainable way to enhance soil health because it also helps with pollution immobilization and carbon sequestration. The function of biochar in altering the physical, chemical, and biological characteristics of soil and the impact of these modifications on crop productivity are also covered in this study. Ultimately, biochar is demonstrated as a potentially helpful tool for improving soil quality and promoting ecologically friendly farming methods.

ABSTRACT

Keywords : amendment, biochar, crop productivity, feedstock, microbial activity, pyrolysis.

Introduction

In agriculture, producing enough food while reducing the negative effects on the environment is still a major problem. Applying inputs at the right rates and using sustainable fertilizer management techniques are essential to achieve this (Shanmugavel *et al.*, 2023). Biochar is one such technique that has shown promise in enhancing soil health and raising crop yields. It has gained significant attention in recent years for its potential benefits in agriculture, climate change mitigation, energy production, and environmental sustainability (Bano *et al.*, 2025). Its capacity to adsorb different substances is influenced by factors such as particle size, surface features, and pore structure (Tan *et al.*, 2015). The wide range of biochar applications can be credited to its unique properties, including

surface functional groups, high thermal stability, cation exchange capacity, heat retention ability, extensive surface area, good permeability, electrical conductivity, and high fixed carbon content. These characteristics have contributed to its value and use across various fields over time (Wang *et al.*, 2019).

Peter Read coined the word "biochar" to describe a fine-grained, porous substance that is rich in carbon that is created when plant biomass is thermally broken down (Ahmed *et al.*, 2014). This process, called pyrolysis, takes place in an oxygen-limited atmosphere at low temperatures (about 350–600°C) (Zhang *et al.*, 2019). Under these circumstances, organic matter breaks down thermally rather than burning to produce biochar. It is produced artificially utilizing contemporary pyrolysis technologies as well as

organically through wildfires (Mohanty *et al.*, 2018). A stable, porous substance that affects several soil qualities is the end result. Biochar changes the physical characteristics of soil, including its moisture content, oxygen availability, and ability to retain water. While fostering biological elements like microbial population, diversity, and their activity. Additionally, biochar can raise soil pH (Zhang *et al.*, 2019) and improve the soil's ability to retain water and nutrients (Krause *et al.*, 2016). Biochar offers advantages such as nutritional enrichment and lessens reliance on inorganic fertilizers by delivering vital nutrients (Bird *et al.*, 2011). It also helps in carbon sequestration and pollutant immobilization (Gul *et al.*, 2015).

Applying biochar to agricultural soils increases crop output by promoting the storage of necessary elements and improving fertility (Marris, 2006). Because biochar increases the availability of nutrients including phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca), sodium (Na), nitrogen (N), total carbon (C), and organic carbon (OC), it is especially advantageous for soils with limited ion-retention capacity (Chan *et al.*, 2007). The kind and extent of these alterations in soil properties affects the growth of crop in biochar amended soils (Jeffery *et al.* 2017).

Crop leftovers, forest litter, animal waste, and invasive weeds like *lantana*, which, despite its quick growth, currently has no useful uses—can all be used as feedstock for the synthesis of biochar. Pyrolysis is an effective technique for turning these organic resources into biochar. The kind of feedstock utilized and the production circumstances determine the particular characteristics of biochar as well as its possible uses.

International Biochar Initiative (IBI)

Biochar is a solid that is created by carbonizing biomass, according to the International Biochar Initiative (IBI) (Lehmann, 2007). Biochar may be used as a carbon sink or modification to lower greenhouse carbon dioxide (CO₂) emissions from decaying biomass (Brewer *et al.*, 2009; Lehmann *et al.*, 2011).

One example that made biochar popular was the theory that the Amazonian inhabitants used it, along with other organic and household wastes, over generations to transform the surface soil horizon into Terra Preta, an extremely productive and rich soil. Biochar's role in soil-building processes has piqued the curiosity of many people (Lehmann *et al.*, 2011).

Feedstocks for Biochar Production

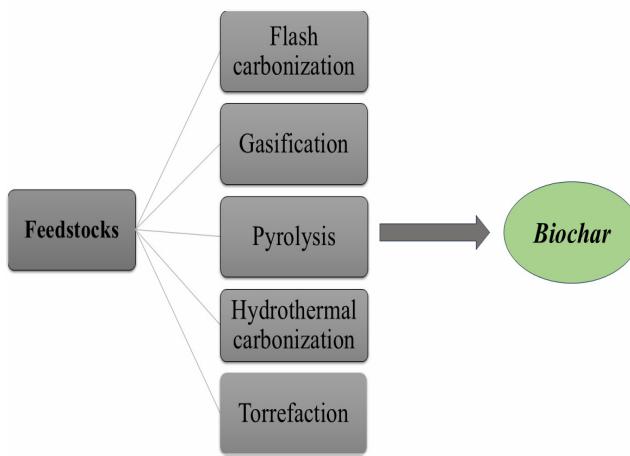
The kind of the pretreatment procedure and the overall effectiveness of the biochar manufacturing

process are greatly impacted by the feedstock type (Amarasinghe *et al.*, 2016). Wood, fruit shells, agricultural leftovers such stems, leaves, and seed pods, green manure, sewage sludge, industrial and municipal waste, and farm outputs are just a few of the many biomass feedstocks that may be utilized to make biochar (Duku *et al.*, 2011; Wang *et al.*, 2018). Algae biomass has also become a sustainable feedstock because of its high nitrogen content and ion exchange capability. It produces biochar, which is a useful soil amendment in agriculture (Yu *et al.*, 2017).

Instead of being used directly as fertilizer, biochar made from plant-based feedstocks is frequently appreciated as a soil conditioner (Uchimiya *et al.*, 2010). When choosing feedstocks, other factors to take into account include their price, accessibility, and lack of contaminants such as heavy metals (Rondon *et al.*, 2007). As a result, selecting the appropriate feedstock is essential in guaranteeing that biochar will work as intended.

Features of Biochar

The importance of biochar is significantly influenced by its chemical and physical characteristics. To comprehend its interactions in soil and assess its possible advantages, proper characterisation is crucial. Important characteristics of biochar, including as pH, ash content, water-holding capacity, bulk density, pore volume, and surface area, are greatly influenced by the quality of the feedstock utilized (Hernandez-Mena *et al.*, 2014).


Furthermore, two important variables affecting the physicochemical characteristics of biochar are the pyrolysis temperature and time (Tag *et al.*, 2016). For example, biochar's surface area increases with increase in pyrolysis temperatures (Ahmad *et al.*, 2012; Zhang *et al.*, 2015). Accordingly, choosing the right pyrolysis temperature necessitates striking a balance between surface features and chemical properties (Chatterjee *et al.*, 2020).

The ideal temperature range for producing biochar is usually 500 to 800°C. Biochar that controls nutrient release is produced at lower pyrolysis temperatures, while biochar that resembles activated carbon is produced at higher temperatures (Day *et al.*, 2005; Ogawa *et al.*, 2006; Chan *et al.*, 2008). It is important to keep in mind, though, that low-temperature biochar could have hydrophobic surfaces, which could lower the soil's ability to retain water.

Biochar Preparation

Biochar is produced and prepared using a variety of procedures (Figure 1), such as (i) pyrolysis, (ii)

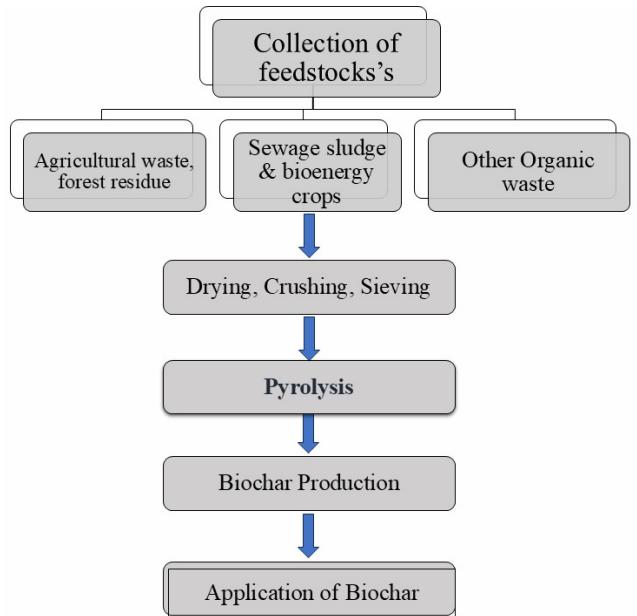

microwave carbonization, (iii) hydrothermal carbonization, and (iv) torrefaction, all of which make use of various heating methods. The thermochemical breakdown of biomass in a low-oxygen (O_2) atmosphere is known as pyrolysis (Demirbas and Arin, 2002). Three forms of pyrolysis are distinguished by temperature and duration: slow, transitional, and rapid pyrolysis (Tripathi *et al.*, 2016). Slow and transitional pyrolysis have prolonged dwelling durations, spanning from minutes to many hours or even days, which makes them appropriate for producing biochar, whereas rapid pyrolysis has a relatively limited retention time.

Fig. 1 : Biochar Preparation Techniques

The stability of biochar is significantly influenced by the temperature during pyrolysis. Biochar produced at temperatures higher than 500°C usually has half-lives of more than a millennium (Ippolito *et al.*, 2020). As the pyrolysis temperature rises, changes in elemental composition may be seen, including the ratios of carbon (C), hydrogen (H), oxygen (O), and nitrogen (N) (Wang *et al.*, 2018). According to Domingues *et al.* (2017), increasing the pyrolysis temperature from 350°C and 450°C to 750°C lowers the cation exchange capacity (CEC), which in turn lowers the nutrient-rich biochar's adsorptive ability.

Furthermore, it has been discovered that greater pyrolysis temperatures increase the amount of ash in biochar while decreasing its surface area and pore volume (Rafiq *et al.*, 2016). In conclusion, temperature has a significant impact on the content, structure, and functional groups of biochar. Thus, choosing the right pyrolysis temperature is crucial for preparing biochar of superior quality.

Fig. 2 : Diagram of the pyrolysis process

The physical, chemical, and biological characteristics of biochar

Physical Characteristics

According to Shenbagavalli and Mahimairaja (2012), biochar is a stable, carbon-rich substance that may persist in soil for thousands of years. Its effectiveness as a soil amendment for enhancing soil health and sequestering carbon is determined by the kind of feedstock utilized and the pyrolysis method, both of which have a substantial impact on its characteristics. The physical characteristics of biochar have several positive effects on the environment, such as raising the pH of the soil, improving moisture retention, encouraging the growth of helpful microbes, boosting cation exchange capacity (CEC), and conserving soil nutrients (Sohi *et al.*, 2010). All of these procedures work together to enhance the fertility and condition of the soil (Ajema, 2018).

Biochar changes the physical and chemical characteristics of soil, reducing bulk density and compaction, improving aeration and CEC, and changing the texture and structure of the soil. Additionally, it makes it easier to restore deteriorated soils. In comparison to other organic components in soil, its large surface area, negative surface charge, and charge density make it more efficient at absorbing cations per unit of carbon, which can increase crop yields (Liang *et al.*, 2006; Lehmann, 2007).

Depending on the makeup and interactions of minerals and organic matter, biochar can have both direct and indirect effects on soil processes. It changes the physical properties of soil, including density,

packing, particle size, surface area, and pore size distribution. These modifications affect the texture, structure, porosity, and consistency of the soil, which affects the passage of water and air in the root zone and, in turn, the development of plants (Blanco-Canqui, 2017). In addition to improving soil permeability, aggregation, and workability, biochar's porous structure helps retain moisture, which makes it especially helpful in areas that are prone to drought. Acidic soils are neutralized by its alkaline properties, which removes restrictions on plant development (Hammes and Schmidt, 2009).

Furthermore, biochar may trap CO_2 and O_2 in its porous structure or adsorb them on its surface, allowing gasses, microorganisms, and nutrients to be retained. By doing this, nutrient leakage into water bodies is decreased, protecting the ecosystem and maintaining soil health.

Chemical Properties By enhancing nutrient retention and lowering acidity through its liming activity, which elevates soil pH, biochar improves soil fertility (Lehmann *et al.*, 2006). It increases soil productivity by adding minerals like potassium (K), phosphorus (P), and micronutrients, or by retaining nutrients from other sources. Even though biochar by itself doesn't always have enough nutrients, it can help crops perform better when combined with either organic or inorganic fertilizers.

The delayed release of nutrients like carbon (C), nitrogen (N), calcium (Ca), magnesium (Mg), potassium (K), and phosphorus (P) that biochar provides is one of its most advantageous qualities since it enables plants to obtain nutrients over a longer period of time (DeLuca *et al.*, 2015). This gradual release lowers nutrient leaching, lessens agricultural contamination, and eliminates the need for regular fertilizer treatments. The negative environmental consequences of chemical fertilizers and pesticides are also lessened by biochar's capacity to store nutrients (Cao *et al.*, 2018).

A wide variety of species, such as bacteria, fungus, protozoa, nematodes, arthropods, and earthworms, are supported by healthy soil. These species find a home in biochar, which boosts biodiversity and soil microbial activity (Slapakova *et al.*, 2018). By providing a haven for beneficial fungi like arbuscular mycorrhizal fungi and microbial communities, the micropores of biochar lessen saprophyte competition and improve nutrient exchange between fungus and plants (Saito and Marumoto, 2002).

According to Krull *et al.* (2003), biochar's stubborn character allows it to endure in soil for thousands of years, with estimations ranging from 1,000 to 10,000 years and an average of about 5,000 years. However, because of its intricate structure, evaluating its long-term stability is challenging (Lehmann *et al.*, 2006).

Additionally, biochar offers a haven for microbial inoculants such as *Bacillus thuringiensis*, *Azospirillum* sp., *Azotobacter* sp., and *Glomus fasciculatum*, *Rhizobium* sp., *Trichoderma viride*, *Pseudomonas fluorescens*, and *mosseae* (Hazarika and Ansari, 2007). Biochar increases nutrient absorption and stimulates plant development by cultivating symbiotic interactions between fungus and plants, especially mycorrhizal fungi. It is a useful tool for sustainable soil management because of its porous nature, which facilitates these interactions (Glaser, 2007).

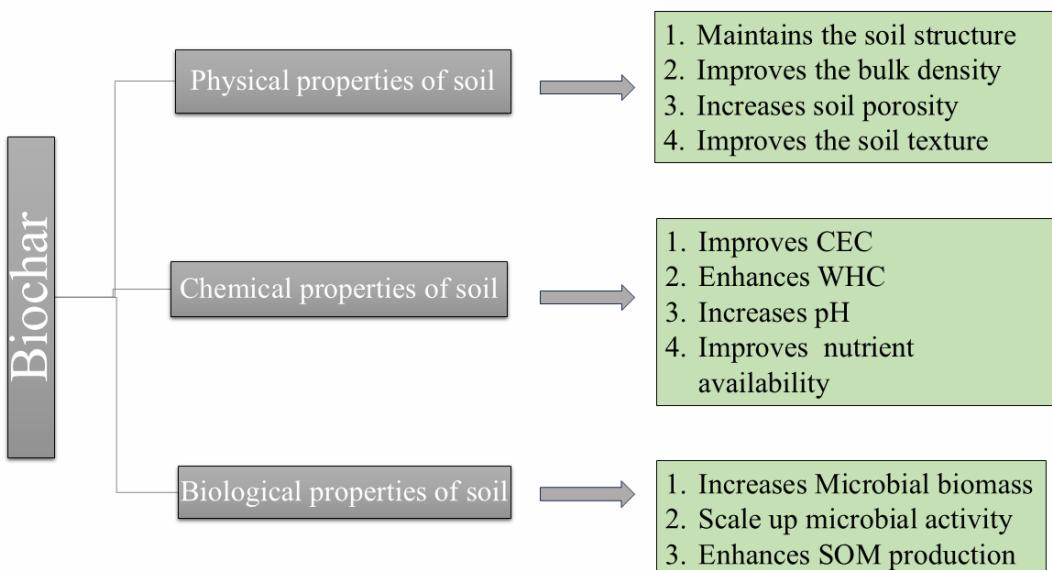
Biochar's Impact on Soil Properties

Effects of biochar on various soil properties viz., physical, chemical and biological is illustrated in figure 3.

Impact on soil physical properties

Impact on Soil Porosity

It has been demonstrated that applying biochar improves soil porosity; however, the degree of improvement varies depending on the kind of biochar and the soil (Herath *et al.*, 2013). Soil aeration, heat transmission, and water flow are all improved by increased porosity (Omondi *et al.*, 2016). Overall soil porosity is influenced by the relative contributions of macro, micro, and mesopores, which differ based on the type of soil and biochar (Githinji, 2014). Biochar decreases saturated hydraulic conductivity (K_{sat}) and enhances water retention in sandy soils while increasing K_{sat} in clayey soils to minimize runoff (Edeh *et al.*, 2020).


Impact on Bulk Density of Soil (BD)

Applying biochar has been shown to dramatically lower soil bulk density; the more biochar applied, the larger the reductions (Herath *et al.*, 2013; Githinji, 2014). According to Liu *et al.* (2016), there is a negative association between the addition of biochar and soil BD, meaning that BD falls as biochar concentration rises. Reducing BD can have positive agronomic effects as it has a direct impact on soil health, crop productivity, and plant development (Githinji, 2014).

Impact on the Aggregation of Soils

Because of its interactions with soil mineral particles, biochar especially when produced at lower temperatures plays a critical role in encouraging the development of soil aggregates (Brodowski *et al.*, 2005). According to Briggs *et al.* (2012), biochar carbon affects soil aggregation and associated processes by interacting with both organic and inorganic soil components. It has been demonstrated

that biochar improves wet aggregate stability, especially in sandy soils. According to Burrell *et al.* (2016), its organic particles enhance the bonding of bigger particles, which leads to soil aggregation in coarse-textured soils as opposed to fine-textured soils. Furthermore, biological, chemical, and physical processes can cause biochar particles to surround inorganic soil aggregates with a carbon-rich core (Hua *et al.*, 2014).

Fig. 3 : Biochar's impact on different soil characteristics

Impact of Applying Biochar on Chemical Characteristics

Biochar is a good soil amendment because it significantly affects the chemical characteristics of the soil (Lehmann *et al.*, 2011). Biochar's high pH makes it an excellent way to improve the pH of soil, especially in acidic soils (Song *et al.*, 2018). Ash content is the main cause of this pH rise as it raises the pyrolysis temperature and mineral makeup of the feedstock used to make biochar (Rafiq *et al.*, 2016).

Additionally, the use of biochar has been associated with increased soil carbon reserves, which can improve soil fertility, promote carbon sequestration, improve nutrient retention, and temporarily stimulate native organic carbon mineralization (positive priming) all of which can result in increased crop yields (Ouyang *et al.*, 2014). After applying biochar for four years, Zhan *et al.* (2015) found that the soil's total nitrogen (N) increased by 27.5%, its carbon (C) content grew by 75.5%, and its peanut yield improved by 50.5%. According to a number of studies, biochar can increase nitrogen

retention, decrease N leaching, and raise the total amount of nitrogen in soil (Major *et al.*, 2012). Because of its porous structure, nitrate and ammonium may be adsorbed, enhancing nitrogen immobilization and decreasing ammonium volatilization, which increases the amount of nitrogen available for plant development (Rondon *et al.*, 2007).

Additionally, biochar contributes to the recycling of phosphorus (P) from sewage sludge and manure, two agricultural wastes. Increased soil P availability is a result of the high phosphorus concentration of biochar's ash (Major *et al.*, 2012; Zhai *et al.*, 2015). Nevertheless, the type of soil affects the availability of phosphorus; biochar increases P availability in acidic soils but may decrease it in alkaline soils because of enhanced sorption (Chintala *et al.*, 2014).

Furthermore, it has been discovered that applying biochar improves the cation exchange capacity (CEC) of soil. According to Major *et al.* (2012), this improvement is usually followed by a decrease in acidic cations and an increase in basic cations, which

influences nutrient availability and may result in increased soil productivity.

Impact of Applying Biochar on Biological Characteristics

Microbial activity has been a major focus of the extensive research on the effects of biochar on soil microbial populations. Biochar can improve microbial populations by interacting with minerals and soil organic matter (Zhang *et al.*, 2014; Pokharel *et al.*, 2020). It is also a useful technique for enhancing soil carbon sinks because to its resilience to degradation and capacity to lower CO₂ emissions from soil organic matter. By altering the availability of carbon, nitrogen, and other soil characteristics, biochar changes the biomass composition and microbial population (Zhang *et al.*, 2014).

Although the effects of biochar might differ based on the kind of soil and application rate, its enormous surface area creates an environment that encourages enzymatic activity. Biochar, a labile carbon source, stimulates microbial activity, which raises the activity of soil enzymes (Ouyang *et al.*, 2014). However, research has indicated that phosphomonoesterase activity can be decreased by applying biochar that contains a large amount of inorganic phosphorus (Zhai *et al.*, 2015). According to Karhu *et al.* (2011), biochar generally creates an environment that is conducive to microbial populations, which increases the biological activity of soil.

Four main ways that biochar affects mycorrhizal associations were described by Warnock *et al.* (2007): (i) changing nutrient availability by modifying soil properties; (ii) affecting interactions between soil microbes; (iii) detoxifying allelochemicals; and (iv) offering defense against soil predators. Numerous studies have reported increased mycorrhizal colonization (Yamato *et al.*, 2006; Solaiman *et al.*, 2010; Shen *et al.*, 2016). Applying biochar has been demonstrated to improve soil fertility and agricultural yield, especially in nutrient-deficient soils (Xie *et al.*, 2013). The impacts on production in extremely rich soils, however, vary; some studies even show growth restriction. The kind of biochar feedstock and the properties of the soil both affect how biochar affects mycorrhizal relationships.

Soil fauna is also impacted by biochar. The precise consequences of ingested biochar inside earthworm systems are yet unknown, although earthworms, for instance, may consume it while they dig and eat. Depending on the kind of soil and the properties of the feedstock, the reactions of soil fauna

to the addition of biochar might range from neutral to positive or negative (Lehmann *et al.*, 2011).

Effect of Biochar on Crop Productivity

The forms of biochar dust, fine particles, and coarse grains as well as the application techniques surface application, top dressing, and drilling are the two primary factors affecting the influence of biochar on crop productivity. When assessing how biochar affects crop performance and soil health, these variables are crucial. Different levels of ash, which is high in minerals that promote plant development, are present in fresh biochar. This offers a temporary benefit, allowing ash-rich biochar to be used as fertilizer in the early phases until the mineral content is exhausted. Research has indicated that the use of biochar has a considerable impact on grain yield, dry matter output, and net primary crop production (Chan *et al.*, 2008). The kind of soil and how biochar is modified determine how successful it is. According to El-Naggar *et al.* (2019), biochar typically exhibits higher efficiency in medium-to-low fertility soils compared to extremely fertile soils, leading to considerable improvements in agricultural output.

In a multi-year study using a soybean (*Glycine max* L.) and maize (*Zea mays* L.) cropping system, Major *et al.* (2010) found that applying 20 t ha⁻¹ of biochar did not increase maize yield in the first year. In contrast to the control, yield increases of 28%, 30%, and 140% were seen in the following three years. Similar findings were made by Park *et al.* (2011), who discovered that adding biochar at a rate of 1% (w/w) considerably raised the dry biomass of Indian mustard by 672% for roots and 452% for shoots. Chemically modified chicken manure was the source of the biochar that was utilized. These gains were ascribed to improved nutritional availability, especially potassium (K) and phosphorus (P), and decreased toxicity from lead (Pb) and copper (Cu).

Biochar for Carbon Sequestration and Climate Change Mitigation

Capturing and storing carbon to stop its escape into the atmosphere is known as carbon sequestration (Duku *et al.*, 2011; Hu *et al.*, 2020). Long-term carbon storage and soil improvement are two advantages of applying biochar to soils (Tenenbaum, 2009; Ennis *et al.*, 2012). Biochar is a promising tool for carbon sequestration due to its ability to remain stable in the soil for hundreds or even thousands of years (Yin *et al.*, 2022). Additionally, biochar helps mitigate climate change by lowering emissions of nitrous oxide (N₂O) and methane (CH₄) from agricultural soils (Gupta *et al.*, 2020). Compared to combustion (3%) and

biological degradation (10–20% after 5–10 years), biochar maintains more than 50% of the carbon from its initial biomass (Lehmann *et al.*, 2006).

The lifespan and nutrient-retention qualities of biochar make it unique. Because it doesn't break down, it improves soil fertility and structure over time. Furthermore, according to Mensah and Frimpong (2018), biochar dramatically improves soil pH, moisture retention, cation exchange capacity (CEC), and microbial activity.

Zhang *et al.* (2010) showed how biochar can lower emissions of CH_4 and N_2O , two major causes of global warming. Additionally, biochar applications (2% to 60% by weight) decreased CO_2 emissions, lowered N_2O generation (beyond 20% application rates), and enhanced methane oxidation, according to Spokas *et al.* (2009).

Additionally, biochar has disease-suppressive qualities that may help reduce pathogen-caused soil-borne illnesses. This suppression process is aided by calcium compounds and enhancements to the physical, chemical, and biological characteristics of the soil (Ogawa, 2009). Research has demonstrated the efficacy of biochar in combating airborne and soil-borne illnesses such powdery mildew, *Botrytis cinerea*, and *Rhizoctonia solani*, as well as *Fusarium* species and *Phytophthora* (Bonanomi *et al.*, 2015). For example, using biochar made from citrus wood improved crops like strawberries (*Fragaria × ananassa*), peppers (*Capsicum annuum*), and tomatoes (*Lycopersicon esculentum*) resistance to gray mold (*Botrytis cinerea*).

Despite the paucity of studies on biochar's ability to inhibit soil-borne pathogens, Elmer *et al.* (2010) found that it may be able to manage certain illnesses. For instance, at treatment rates of 0.32%, 1.60%, and 3.20% (w/w), biochar decreased root rot disease and enhanced plant biomass in asparagus soils afflicted with *Fusarium*. Likewise, *Fusarium* root rot in asparagus crops has been successfully prevented by using charcoal enhanced with mycorrhizal fungus (Thies and Rillig, 2009).

Biochar is a promising and versatile approach to improving soil health, encouraging sustainable agriculture, and tackling environmental issues like climate change. By improving soil fertility, structure, and water retention, its application increases crop yields while lowering the demand for inorganic fertilizers. Furthermore, biochar is an essential strategy for reducing greenhouse gas emissions because of its capacity to store carbon in the soil. However, addressing obstacles pertaining to production prices,

application methods, and regional variations in efficacy is necessary before it can be widely used. To maximize biochar synthesis and application techniques for various agricultural systems, more research and development is required. All things considered, biochar has a great deal of promise for incorporating into sustainable farming methods and enhancing agricultural and environmental resilience over the long run.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J. K., & Yang, J. E. (2012). Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. *Bioresource Technology*, **118**, 536–544. <https://doi.org/10.1016/j.biortech.2012.05.042>

Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. *Chemosphere*, **99**, 19–33. <https://doi.org/10.1016/j.chemosphere.2013.10.071>

Ajema, L. (2018). Effects of biochar application on beneficial soil organisms. *International Journal of Research Studies in Science, Engineering and Technology*, **5**(5), 9–18.

Akhtar, S., Andersen, M. N., & Liu, F. (2015). Biochar mitigates salinity stress in potato. *Journal of Agronomy and Crop Science*, **201**, 368–378.

Amarasinghe, H. A. H. I., Gunathilake, S. K., & Karunaratna, A. K. (2016). Ascertaining of optimum pyrolysis conditions in producing refuse tea biochar as a soil amendment. *Procedia Food Science*, **6**, 97–102. <https://doi.org/10.1016/j.profoo.2016.02.021>

Amer, M. M. (2016). Effect of biochar, compost tea and magnetic iron ore application on some soil properties and productivity of some field crops under saline soils conditions at North Nile Delta. *Egyptian Journal of Soil Science*, **56**, 169–186.

Anderson, P. S., & Reed, T. B. (2004). *Biomass gasification: Clean residential stoves, commercial power generation, and global impacts*. LAMNET Project International Workshop on Bioenergy for a Sustainable Development, Viña del Mar, Chile.

Aneseye, A. B., & Wolde, T. (2021). Effect of biochar and inorganic fertilizer on the soil properties and growth and yield of onion (*Allium cepa*) in tropical Ethiopia. *Scientific World Journal*, Article 5582697. <https://doi.org/10.1155/2021/5582697>

Asai, H., Samson, B. K., Stephan, H. M., Songyikhangsuthor, K., Homma, K., Kiyono, Y., Inoue, Y., Shiraiwa, T., & Horie, T. (2009). Biochar amendment techniques for upland rice production in northern Laos: Soil physical properties, leaf SPAD and grain yield. *Field Crops Research*, **111**, 81–84.

Bano, A., Aziz, M. K., Prasad, B., Ravi, R., Shah, M. P., Lins, P. V. D. S., & Prasad, K. S. (2025). The multifaceted power of biochar: A review on its role in pollution

control, sustainable agriculture, and circular economy. *Environmental Chemistry and Ecotoxicology*. (In press)

Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., & Sizmur, T. (2011). A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils. *Environmental Pollution*, **159**(12), 3269–3282.

Bird, M. I., Wurster, C. M., De Paula Silva, P. H., Bass, A. M., & De Nys, R. (2011). Algal biochar—production and properties. *Bioresource Technology*, **102**(2), 1886–1891.

Blanco-Canqui, H. (2017). Biochar and soil physical properties. *Soil Science Society of America Journal*, **81**(4), 687–711.

Bonanomi, G., Ippolito, F., & Scala, F. (2015). A “black” future for plant pathology? Biochar as a new soil amendment for controlling plant diseases. *Plant Pathology*, **97**(2).

Briggs, C., Breiner, J. M., & Graham, R. C. (2012). Physical and chemical properties of *Pinus ponderosa* charcoal. *Soil Science*, **177**(4), 263–268. <https://doi.org/10.1097/SS.0b013e3182482784>

Brodowski, S., Amelung, W., Haumaier, L., Abetz, C., & Zech, W. (2005). Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. *Geoderma*, **128**(1–2), 116–129. <https://doi.org/10.1016/j.geoderma.2004.12.019>

Brown, R. A., Kercher, A. K., Nguyen, T. H., Nagle, D. C., & Ball, W. P. (2006). Production and characterization of synthetic wood chars for use as surrogates for natural sorbents. *Organic Geochemistry*, **37**(3), 321–333. <https://doi.org/10.1016/j.orggeochem.2005.10.008>

Burrell, L. D., Zehetner, F., Rampazzo, N., Wimmer, B., & Soja, G. (2016). Long-term effects of biochar on soil physical properties. *Geoderma*, **282**, 96–102. <https://doi.org/10.1016/j.geoderma.2016.07.019>

Cao, Y., Gao, Y., Qi, Y., & Li, J. (2018). Biochar-enhanced composts reduce the potential leaching of nutrients and heavy metals and suppress plant-parasitic nematodes in excessively fertilized cucumber soils. *Environmental Science and Pollution Research*, **25**, 7589–7599.

Carpenter, B. H., & Nair, A. (2014). Effect of biochar on carrot production. *Iowa State University Research and Demonstration Farms Progress Reports*, **13**, 1.

Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2007). Agronomic values of greenwaste biochar as a soil amendment. *Soil Research*, **45**(8), 629–634.

Chatterjee, R., Sajjadi, B., Chen, W. Y., Mattern, D. L., Hammer, N., Raman, V., & Dorris, A. (2020). Effect of pyrolysis temperature on physicochemical properties and acoustic-based amination of biochar for efficient CO₂ adsorption. *Frontiers in Energy Research*, **8**, 85.

Chintala, R., Schumacher, T. E., McDonald, L. M., Clay, D. E., Malo, D. D., Papiernik, S. K., Clay, S. A., & Julson, J. L. (2014). Phosphorus sorption and availability from biochars and soil/biochar mixtures. *Clean – Soil, Air, Water*, **42**(5), 626–634. <https://doi.org/10.1002/clen.201300089>

Cui, Y. F., Zeng, Y. Q., & Chen, W. F. (2008). Applying effect of pellet active carbon and slow-release fertilizer on maize. *Agricultural and Food Science*, **3**, 5–8.

DeLuca, T. H., Gundale, M. J., MacKenzie, M. D., & Jones, D. L. (2015). Biochar effects on soil nutrient transformations. In J. Lehmann & S. Joseph (Eds.), *Biochar for environmental management: Science, technology and implementation* (2nd ed., pp. 421–454).

Demirbas, A., & Arin, G. (2002). An overview of biomass pyrolysis. *Energy Sources*, **24**(5), 471–482. <https://doi.org/10.1080/00908310252889979>

Domingues, R. R., Trugilho, P. F., Silva, C. A., Melo, I. C. N. A., Melo, L. C. A., Magriotis, Z. M., & Sanchez-Moneder, M. A. (2017). Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. *PLoS ONE*, **12**(5), e0176884. <https://doi.org/10.1371/journal.pone.0176884>

Duku, M. H., Gu, S., & Hagan, E. B. (2011). Biochar production potential in Ghana: A review. *Renewable and Sustainable Energy Reviews*, **15**(8), 3539–3551. <https://doi.org/10.1016/j.rser.2011.05.010>

Edeh, I. G., Mašek, O., & Buss, W. (2020). A meta-analysis on biochar's effects on soil water properties: New insights and future research challenges. *Science of the Total Environment*, **714**, 136857. <https://doi.org/10.1016/j.scitotenv.2020.136857>

Elmer, W., White, J. C., & Pignatello, J. J. (2010). *Impact of biochar addition to soil on the bioavailability of chemicals important in agriculture*. University of Connecticut.

El-Naggar, A., Lee, S. S., Rinklebe, J., Farooq, M., Song, M. H., Sarmah, A. K., Zimmerman, A. R., Ahmad, M., Shaheen, S. M., & Ok, Y. S. (2019). Biochar application to low fertility soils: A review of current status and future prospects. *Geoderma*, **337**, 536–554. <https://doi.org/10.1016/j.geoderma.2018.09.034>

Ennis, C. J., Evans, A. G., Islam, M., Ralebitso-Senior, T. K., & Senior, E. (2012). Biochar: Carbon sequestration, land remediation, and impacts on soil microbiology. *Critical Reviews in Environmental Science and Technology*, **42**(22), 2311–2364.

Gaskin, J. W., Speir, R. A., Harris, K., Das, K. C., Lee, R. D., Morris, L. A., & Fisher, D. S. (2010). Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. *Agronomy Journal*, **102**, 623–633.

Genesio, L., Miglietta, F., Baronti, S., & Vaccari, F. P. (2015). Biochar increases vineyard productivity without affecting grape quality: Results from a four-year field experiment in Tuscany. *Agriculture, Ecosystems & Environment*, **201**, 20–25. <https://doi.org/10.1016/j.agee.2014.11.021>

Githinji, L. (2014). Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam. *Archives of Agronomy and Soil Science*, **60**(4), 457–470. <https://doi.org/10.1080/03650340.2013.821698>

Glaser, B. (2007). Prehistorically modified soils of central Amazonia: A model for sustainable agriculture in the twenty-first century. *Philosophical Transactions of the Royal Society B: Biological Sciences*, **362**(1478), 187–196.

Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., & Deng, H. (2015). Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. *Agriculture, Ecosystems & Environment*, **206**, 46–59. <https://doi.org/10.1016/j.agee.2015.03.015>

Gupta, D. K., Gupta, C. K., Dubey, R., Fagodiya, R. K., Sharma, G., Noor Mohamed, M. B., & Shukla, A. K. (2020). Role of biochar in carbon sequestration and

greenhouse gas mitigation. In *Biochar applications in agriculture and environment management* (pp. 141–165).

Haefele, S. M., Konboon, Y., Wongboon, W., Amarante, S., Maarifat, A. A., Pfeiffer, E. M., & Knoblauch, C. (2011). Effects and fate of biochar from rice residues in rice-based systems. *Field Crops Research*, **121**, 430–440.

Hammes, K., & Schmidt, M. W. I. (2012). Changes of biochar in soil. In J. Lehmann & S. Joseph (Eds.), *Biochar for environmental management* (pp. 201–214). Routledge.

Hazarika, B. N., & Ansari, S. (2007). Biofertilizers in fruit crops: A review. *Agricultural Reviews*, **28**(1), 69–74.

Herath, H. M. S. K., Arbestain, M. C., & Hedley, M. (2013). Effect of biochar on soil physical properties in two contrasting soils: An Alfisol and an Andisol. *Geoderma*, **209–210**, 188–197. <https://doi.org/10.1016/j.geoderma.2013.06.016>

Hernandez-Mena, L. E., Pécora, A. A. B., & Beraldo, A. L. (2014). Slow pyrolysis of bamboo biomass: Analysis of biochar properties. *Italian Association of Chemical Engineering*, **37**, 115–120.

Hu, R., Xiao, J., Wang, T., Gong, Y., Chen, G., Chen, L., & Tian, X. (2020). Highly concentrated amino-modified biochars using a plasma: Evolution of surface composition and porosity for heavy metal capture. *Carbon*, **168**, 515–527.

Hua, L., Lu, Z., Ma, H., & Jin, S. (2014). Effect of biochar on carbon dioxide release, organic carbon accumulation and aggregation of soil. *Environmental Progress & Sustainable Energy*, **33**(3), 941–946. <https://doi.org/10.1002/ep.11867>

Hua, L., Wu, W., Liu, Y., McBride, M. B., & Chen, Y. (2009). Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment. *Environmental Science and Pollution Research*, **16**, 1–9.

Iliffe, R. (2009). *Is the biochar produced by an anila stove likely to be a beneficial soil additive?* (Master's thesis). UK Biochar Research Centre Working Paper No. 4.

Indawan, E., Lestari, S. U., & Thiasari, N. (2018). Sweet potato response to biochar application on sub-optimal dry land. *Journal of Degraded and Mining Lands Management*, **5**, 1133.

Ippolito, J. A., Cui, L., Kammann, C., Wrage-Mönnig, N., Estavillo, J. M., Fuertes-Mendizábal, T., Cayuela, M. L., Sigua, G. C., Novak, J., & Spokas, K. (2020). Feedstock choice, pyrolysis temperature and type influence biochar characteristics: A comprehensive meta-data analysis review. *Biochar*, **2**(4), 421–438. <https://doi.org/10.1007/s42773-020-00067-x>

Lehmann, J., & Neves, E. G. (2006). Black carbon increases cation exchange capacity in soils. *Soil Science Society of America Journal*, **70**(5), 1719–1730.

Jiang, S., Liu, J., Wu, J., Dai, G., Wei, D., & Shu, Y. (2020). Assessing biochar application to immobilize Cd and Pb in a contaminated soil: A field experiment under a cucumber–sweet potato–rape rotation. *Environmental Geochemistry and Health*, **42**, 4233–4244.

Karhu, K., Mattila, T., Bergström, I., & Regina, K. (2011). Biochar addition to agricultural soil increased CH₄ uptake and water holding capacity: Results from a short-term pilot field study. *Agriculture, Ecosystems & Environment*, **140**(1–2), 309–313. <https://doi.org/10.1016/j.agee.2010.12.005>

Krause, A., Nehls, T., George, E., & Kaupenjohann, M. (2016). Organic wastes from bioenergy and ecological sanitation as a soil fertility improver: A field experiment in a tropical Andosol. *SOIL*, **2**, 147–162.

Krull, E. S., Skjemstad, J. O., Graetz, D., Grice, K., Dunning, W., Cook, G., & Parr, J. F. (2003). ¹³C-depleted charcoal from C₄ grasses and the role of occluded carbon in phytoliths. *Organic Geochemistry*, **34**(9), 1337–1352.

Laird, D. A., Fleming, P., Davis, D. D., Horton, R., Wang, B., & Karlen, D. L. (2010). Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. *Geoderma*, **158**(3–4), 443–449.

Lee, S., Shah, H. S., Igalavitkana, A. D., Awad, Y. M., & Ok, Y. S. (2013). Enhancement of C₃ and C₄ plants productivity in soils amended with biochar and polyacrylamide. *Technical Bulletin, Food & Fertilizer Technology Center for the Asian and Pacific Region*, **199**, 1–12.

Lehmann, J. (2007). Bio-energy in the black. *Frontiers in Ecology and the Environment*, **5**(7), 381–387.

Lehmann, J., Gaunt, J., & Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems: A review. *Mitigation and Adaptation Strategies for Global Change*, **11**, 403–427.

Lehmann, J., Pereira da Silva, J., Steiner, C., Nehls, T., Zech, W., & Glaser, B. (2003). Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. *Plant and Soil*, **249**, 343–357.

Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota—A review. *Soil Biology and Biochemistry*, **43**(9), 1812–1836. <https://doi.org/10.1016/j.soilbio.2011.04.022>

Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'Neill, B., Skjemstad, J. O., Thies, J., Luizão, F. J., Petersen, J., & Neves, E. G. (2014). Characterization of corncob-derived biochar and pyrolysis kinetics in comparison with corn stalk and sawdust. *Bioresource Technology*, **170**, 76–82.

Liu, Z., Dugan, B., Masiello, C. A., Barnes, R. T., Gallagher, M. E., & Gonnermann, H. (2016). Impacts of biochar concentration and particle size on hydraulic conductivity and DOC leaching of biochar–sand mixtures. *Journal of Hydrology*, **533**, 461–472. <https://doi.org/10.1016/j.jhydrol.2015.12.007>

Major, J., Lehmann, J., Rondon, M., & Goodale, C. (2010). Fate of soil-applied black carbon: Downward migration, leaching and soil respiration. *Global Change Biology*, **16**(4), 1366–1379.

Major, J., Rondon, M., Molina, D., Riha, S. J., & Lehmann, J. (2010). Maize yield and nutrition during 4 years after biochar application to a Colombian savanna Oxisol. *Plant and Soil*, **333**(1–2), 117–128. <https://doi.org/10.1007/s11104-010-0327-0>

Major, J., Rondon, M., Molina, D., Riha, S. J., & Lehmann, J. (2012). Nutrient leaching in a Colombian savanna Oxisol amended with biochar. *Journal of Environmental Quality*, **41**(4), 1076–1086. <https://doi.org/10.2134/jeq2011.0128>

Marris, E. (2006). Putting the carbon back: Black is the new green. *Nature*, **442**(7103), 624–626.

Martinsen, V., Alling, V., Nurida, N. L., Mulder, J., Hale, S. E., Ritz, C., Rutherford, D. W., Heikens, A., Breedveld, G. D., & Cornelissen, G. (2015). pH effects of the addition of three biochars to acidic Indonesian mineral soils. *Soil Science and Plant Nutrition*, **61**(5), 821–834. <https://doi.org/10.1080/00380768.2015.1052985>

Medynska-Juraszek, A., Latawiec, A., Krolczyk, J., Bogacz, A., Kawałko, D., Bednik, M., & Dudek, M. (2021). Biochar improves maize growth but has a limited effect on soil properties: Evidence from a three-year field experiment. *Sustainability*, **13**, 3617.

Mensah, A. K., & Frimpong, K. A. (2018). Biochar and/or compost applications improve soil properties, growth, and yield of maize grown in acidic rainforest and coastal savannah soils in Ghana. *International Journal of Agronomy*, **2018**, Article 6837404. <https://doi.org/10.1155/2018/6837404>

Mohan, D., Pittman, C. U., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: A critical review. *Energy & Fuels*, **20**(3), 848–889. <https://doi.org/10.1021/ef0502397>

Mohanty, S. K., Valenca, R., Berger, A. W., Yu, I. K. M., Xiong, X., Saunders, T. M., & Tsang, D. C. W. (2018). Plenty of room for carbon on the ground: Potential applications of biochar for stormwater treatment. *Science of the Total Environment*, **625**, 1644–1658.

Mollick, O. A., Paul, A. K., Alam, I., & Sumon, M. M. (2020). Effect of biochar on yield and quality of potato (*Solanum tuberosum*) tuber. *International Journal of Bio-resource and Stress Management*, **11**, 445–450.

Ogawa, M. (2009). Charcoal use in agriculture in Japan. In *Proceedings of the 1st Asia Pacific Biochar Conference*.

Omondi, M. O., Xia, X., Nahayo, A., Liu, X., Korai, P. K., & Pan, G. (2016). Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. *Geoderma*, **274**, 28–34. <https://doi.org/10.1016/j.geoderma.2016.03.029>

Ouyang, L., Tang, Q., Yu, L., & Zhang, R. (2014). Effects of amendment of different biochars on soil enzyme activities related to carbon mineralization. *Soil Research*, **52**(7), 706–716. <https://doi.org/10.1071/SR14075>

Park, J., Hung, I., Gan, Z., Rojas, O. J., Lim, K. H., & Park, S. (2013). Activated carbon from biochar: Influence of its physicochemical properties on the sorption characteristics of phenanthrene. *Bioresource Technology*, **149**, 383–389. <https://doi.org/10.1016/j.biortech.2013.09.085>

Park, J. H., Choppala, G. K., Bolan, N. S., Chung, J. W., & Chuasavathi, T. (2011). Biochar reduces the bioavailability and phytotoxicity of heavy metals. *Plant and Soil*, **348**(1–2), 439–451. <https://doi.org/10.1007/s11104-011-0948-y>

Pokharel, P., Ma, Z., & Chang, S. X. (2020). Biochar increases soil microbial biomass with changes in extra- and intracellular enzyme activities: A global meta-analysis. *Biochar*, **2**, 65–79. <https://doi.org/10.1007/s42773-020-00039-1>

Purakayastha, T. J., Das, K. C., Julia, G., & Keith, H. (2012). Evaluating potential of biochar to increase carbon sequestration in soil for mitigating climate change. In *Proceedings of the 99th Indian Science Congress* (Part II, Abstracts of Oral Presentation, pp. 3–7).

Rab, A., Khan, M. R., Haq, S. U., Zahid, S., Asim, M., Afridi, M. Z., Arif, M., & Munsif, F. (2016). Impact of biochar on mungbean yield and yield components. *Pure and Applied Biology*, **5**, 632–640.

Raboin, L. M., Razafimahafaly, A. H. D., Rabenjarisoa, M. B., Rabary, B., Dusserre, J., & Becquer, T. (2016). Improving the fertility of tropical acid soils: Liming versus biochar application? A long-term comparison in the highlands of Madagascar. *Field Crops Research*, **199**, 99–108.

Rafiq, M. K., Bachmann, R. T., Rafiq, M. T., Shang, Z., Joseph, S., & Long, R. (2016). Influence of pyrolysis temperature on physico-chemical properties of corn stover (*Zea mays* L.) biochar and feasibility for carbon capture and energy balance. *PLoS ONE*, **11**(6), e0156894. <https://doi.org/10.1371/journal.pone.0156894>

Rondón, M. A., Lehmann, J., Ramírez, J., & Hurtado, M. (2007). Biological nitrogen fixation by common beans (*Phaseolus vulgaris* L.) increases with biochar additions. *Biology and Fertility of Soils*, **43**(6), 699–708. <https://doi.org/10.1007/s00374-006-0152-z>

Saarnio, S., Heimonen, K., & Kettunen, R. (2013). Biochar addition indirectly affects N:O emissions via soil moisture and plant N uptake. *Soil Biology and Biochemistry*, **58**, 99–106.

Saito, M., & Marumoto, T. (2002). Inoculation with arbuscular mycorrhizal fungi: The status quo in Japan and future prospects. *Plant and Soil*, **244**, 273–279. <https://doi.org/10.1023/A:1020287900415>

Schmalenberger, A., & Fox, A. (2016). Bacterial mobilization of nutrients from biochar-amended soils. *Advances in Applied Microbiology*, **94**, 109–159. <https://doi.org/10.1016/bs.aambs.2015.10.001>

Shanmugavel, D., Rusyn, I., Solórzano-Feria, O., & Kamaraj, S. K. (2023). Sustainable SMART fertilizers in agricultural systems: A review on fundamentals to in-field applications. *Science of the Total Environment*, **904**, 166729.

Shareef, T. M. E., & Zhao, B. (2016). The fundamentals of biochar as a soil amendment tool and management in agriculture scope: An overview for farmers and gardeners. *Journal of Agricultural Chemistry and Environment*, **6**(1), 38–61.

Shen, Q., Hedley, M., Camps-Arbestain, M., & Kirschbaum, M. U. F. (2016). Can biochar increase the bioavailability of phosphorus? *Journal of Soil Science and Plant Nutrition*, **16**(2), 268–286. <https://doi.org/10.4067/S0718-95162016005000022>

Shenbagavalli, S., & Mahimairaja, S. (2012). Production and characterization of biochar from different biological wastes. *International Journal of Plant, Animal and Environmental Sciences*, **2**(1), 197–201.

Singh, B. P., Hatton, B. J., Singh, B., Cowie, A. L., & Kathuria, A. (2010). Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. *Journal of Environmental Quality*, **39**(4), 1224–1235.

Šlapáková, B., Jeřábková, J., Voříšek, K., Tejnecký, V., & Drábek, O. (2018). The biochar effect on soil respiration and nitrification. *Plant, Soil and Environment*, **64**(3), 114–119.

Solaiman, Z. M., Blackwell, P., Abbott, L. K., & Storer, P. (2010). Direct and residual effect of biochar application on mycorrhizal root colonization, growth and nutrition of wheat. *Soil Research*, **48**(7), 546–554. <https://doi.org/10.1071/SR10002>

Song, D., Tang, J., Xi, X., Zhang, S., Liang, G., Zhou, W., & Wang, X. (2018). Responses of soil nutrients and microbial activities to additions of maize straw biochar and chemical fertilization in a calcareous soil. *European Journal of Soil Biology*, **84**, 1–10. <https://doi.org/10.1016/j.ejsobi.2017.11.003>

Spokas, K. A., Koskinen, W. C., Baker, J. M., & Reicosky, D. C. (2009). Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. *Chemosphere*, **77**(4), 574–581.

Srinivasarao, C., Gopinath, K. A., Venkatesh, G., Dubey, A. K., Wakudkar, H., Purakayastha, T. J., & Sikka, A. K. (2013). *Use of biochar for soil health enhancement and greenhouse gas mitigation in India: Potential and constraints*.

Steiner, C., Teixeira, W. G., Lehmann, J., Nehls, T., Macêdo, J. L. V., Blum, W. E. H., & Zech, W. (2007). Long-term effects of manure, charcoal, and mineral fertilization on crop production and fertility on a highly weathered central Amazonian upland soil. *Plant and Soil*, **291**(1–2), 275–290. <https://doi.org/10.1007/s11104-007-9193-9>

Tag, A. T., Duman, G., Uçar, S., & Yanik, J. (2016). Effects of feedstock type and pyrolysis temperature on potential applications of biochar. *Journal of Analytical and Applied Pyrolysis*, **120**, 200–206. <https://doi.org/10.1016/j.jaap.2016.05.006>

Taghizadeh-Toosi, A., Clough, T. J., Sherlock, R. R., & Condron, L. M. (2012). Biochar adsorbed ammonia is bioavailable. *Plant and Soil*, **350**, 57–69.

Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., & Yang, Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions. *Chemosphere*, **125**, 70–85. <https://doi.org/10.1016/j.chemosphere.2014.12.058>

Tenenbaum, D. J. (2009). Biochar: Carbon mitigation from the ground up. *Environmental Health Perspectives*, **117**(2), A70–A73.

Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. *Renewable and Sustainable Energy Reviews*, **55**, 467–481. <https://doi.org/10.1016/j.rser.2015.10.122>

Uchimiya, M., Lima, I. M., Klasson, K. T., & Wartelle, L. H. (2010). Contaminant immobilization and nutrient release by biochar soil amendment: Roles of natural organic matter. *Chemosphere*, **80**(8), 935–940. <https://doi.org/10.1016/j.chemosphere.2010.05.020>

Uzoma, K. C., Inoue, M., Andry, H., Fujimaki, H., Zahoor, A., & Nishihara, E. (2011). Effect of cow manure biochar on maize productivity under sandy soil conditions. *Soil Use and Management*, **27**(2), 205–212. <https://doi.org/10.1111/j.1475-2743.2011.00340.x>

Vaccari, F. P., Baronti, S., Lugato, E., Genesio, L., Castaldi, S., Fornasier, F., & Miglietta, F. (2011). Biochar as a strategy to sequester carbon and increase yield in durum wheat. *European Journal of Agronomy*, **34**, 231–238.

Van Zwieten, L., Kimber, S., Downie, A., Morris, S., Petty, S., Rust, J., & Chan, K. Y. (2010). A glasshouse study on the interaction of low mineral ash biochar with nitrogen in a sandy soil. *Soil Research*, **48**(7), 569–576.

Venkatesh, G., Korwar, G. R., Venkateswarlu, B., Gopinath, K. A., Mandal, U. K., Srinivasarao, C., & Grover, M. T. (2010). Preliminary studies on conversion of maize stalks into biochar for terrestrial sequestration of carbon in rainfed agriculture. In *Proceedings of the National Symposium on Climate Change and Rainfed Agriculture* (pp. 388–391).

Wang, J., & Wang, S. (2019). Preparation, modification and environmental application of biochar: A review. *Journal of Cleaner Production*, **227**, 1002–1022. <https://doi.org/10.1016/j.jclepro.2019.04.282>

Wang, M., Zhu, Y., Cheng, L., Anderson, B., Zhao, X., Wang, D., & Ding, A. (2018). Review on utilization of biochar for metal-contaminated soil and sediment remediation. *Journal of Environmental Sciences*, **63**, 156–173. <https://doi.org/10.1016/j.jes.2017.08.004>

Warnock, D. D., Lehmann, J., Kuyper, T. W., & Rillig, M. C. (2007). Mycorrhizal responses to biochar in soil: Concepts and mechanisms. *Plant and Soil*, **300**(1–2), 9–20. <https://doi.org/10.1007/s11104-007-9391-5>

Windeatt, J. H., Ross, A. B., Williams, P. T., Forster, P. M., Nahil, M. A., & Singh, S. (2014). Characteristics of biochars from crop residues: Potential for carbon sequestration and soil amendment. *Journal of Environmental Management*, **146**, 189–197. <https://doi.org/10.1016/j.jenvman.2014.08.003>

Xie, Z., Xu, Y., Liu, G., Liu, Q., Zhu, J., Tu, C., & Hu, S. (2013). Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China. *Plant and Soil*, **370**, 527–540.

Yamato, M., Okimori, Y., Wibowo, I. F., Anshori, S., & Ogawa, M. (2006). Effects of the application of charred bark of *Acacia mangium* on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. *Soil Science and Plant Nutrition*, **52**(4), 489–495. <https://doi.org/10.1111/j.1747-0765.2006.00065>

Yin, J., Zhao, L., Xu, X., Li, D., Qiu, H., & Cao, X. (2022). Evaluation of long-term carbon sequestration of biochar in soil with a biogeochemical field model. *Science of the Total Environment*, **822**, 153576. <https://doi.org/10.1016/j.scitotenv.2022.153576>

Yu, K. L., Lau, B. F., Show, P. L., Ong, H. C., Ling, T. C., Chen, W. H., Ng, E. P., & Chang, J. S. (2017). Recent developments on algal biochar production and characterization. *Bioresource Technology*, **246**, 2–11. <https://doi.org/10.1016/j.biortech.2017.08.009>

Yu, X. Y., Ying, G. G., & Kookana, R. S. (2009). Reduced plant uptake of pesticides with biochar additions to soil. *Chemosphere*, **76**(5), 665–671.

Yuan, J. H., & Xu, R. K. (2011). The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. *Soil Use and Management*, **27**(1), 110–115.

Zhai, L., Cai, Z., Liu, J., Wang, H., Ren, T., Gai, X., Xi, B., & Liu, H. (2015). Short-term effects of maize residue biochar on phosphorus availability in two soils with different phosphorus sorption capacities. *Biology and Fertility of Soils*, **51**(1), 113–122. <https://doi.org/10.1007/s00374-014-0954-3>

Zhan, X., Peng, J., Wang, Y., Liu, Y. F., Chen, K., Han, X. R., Wang, H. F., Lin, W. C., & Li, X. Y. (2015). Influences of application of biochar and biochar-based fertilizer on brown soil physicochemical properties and peanut yields.

Journal of Plant Nutrition and Fertilizer, **21**(6), 1633–1641. <https://doi.org/10.11674/zwyf.2015.0631>

Zhang, A., Cui, L., Pan, G., Li, L., Hussain, Q., Zhang, X., & Crowley, D. (2010). Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. *Agriculture, Ecosystems & Environment*, **139**(4), 469–475.

Zhang, J., Liu, J., & Liu, R. (2015). Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. *Bioresource Technology*, **176**, 288–291. <https://doi.org/10.1016/j.biortech.2014.11.011>

Zhang, M., Riaz, M., Zhang, L., El-Desouki, Z., & Jiang, C. (2019). Biochar induces changes to basic soil properties and bacterial communities of different soils to varying degrees at 25 mm rainfall: More effective on acidic soils. *Frontiers in Microbiology*, **10**, 1321. <https://doi.org/10.3389/fmicb.2019.01321>

Zhang, Q. Z., Dijkstra, F. A., Liu, X. R., Wang, Y. D., Huang, J., & Lu, N. (2014). Effects of biochar on soil microbial biomass after four years of consecutive application in the North China Plain. *PLoS ONE*, **9**(7), e102062. <https://doi.org/10.1371/journal.pone.0102062>