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ABSTRACT

In order to maximize crop output and reduce environmental damage, sustainable agriculture methods are
crucial. The pyrolysis of organic materials produces biochar, a carbon-rich byproduct that has generated
a lot of attention due to its potential to enhance soil health, boost agricultural productivity, and aid in
climate change mitigation. The feedstock supply, pyrolysis conditions, and soil properties all affect how
effective biochar is. Waste valorization is possible through the manufacture of biochar from invasive
plants like lantana, animal waste, forest litter, and agricultural wastes. Therefore, adding biochar to
agricultural systems can reduce environmental issues while increasing crop output and soil sustainability.
By decreasing the bulk density of soil, increasing microbial activity, pH, water-holding capacity, and
improving nutrient retention, the use of biochar lessens the need for inorganic fertilizers. Biochar greatly
increases soil fertility and crop production by enriching the soil with vital elements including
phosphorus, potassium, nitrogen, and organic carbon. It is a sustainable way to enhance soil health
because it also helps with pollution immobilization and carbon sequestration. The function of biochar in
altering the physical, chemical, and biological characteristics of soil and the impact of these
modifications on crop productivity are also covered in this study. Ultimately, biochar is demonstrated as
a potentially helpful tool for improving soil quality and promoting ecologically friendly farming
methods.
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reducing the negative effects on the environment is still
a major problem. Applying inputs at the right rates and
using sustainable fertilizer management techniques are
essential to achieve this (Shanmugavel et al., 2023).
Biochar is one such technique that has shown promise
in enhancing soil health and raising crop yields. It has
gained significant attention in recent years for its
potential benefits in agriculture, climate change
mitigation, energy production, and environmental
sustainability (Bano et al., 2025). Its capacity to adsorb
different substances is influenced by factors such as
particle size, surface features, and pore structure (Tan
et al., 2015). The wide range of biochar applications
can be credited to its unique properties, including

conductivity, and high fixed carbon content. These
characteristics have contributed to its value and use
across various fields over time (Wang et al., 2019).

Peter Read coined the word "biochar" to describe
a fine-grained, porous substance that is rich in carbon
that is created when plant biomass is thermally broken
down (Ahmed et al., 2014). This process, called
pyrolysis, takes place in an oxygen-limited atmosphere
at low temperatures (about 350-600°C) (Zhang et al.,
2019). Under these circumstances, organic matter
breaks down thermally rather than burning to produce
biochar. It is produced artificially utilizing
contemporary pyrolysis technologies as well as
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organically through wildfires (Mohanty et al., 2018). A
stable, porous substance that affects several soil
qualities is the end result. Biochar changes the physical
characteristics of soil, including its moisture content,
oxygen availability, and ability to retain water. While
fostering biological elements like microbial population,
diversity, and their activity. Additionally, biochar can
raise soil pH (Zhang et al., 2019) and improve the
soil's ability to retain water and nutrients (Krause et al.,
2016). Biochar offers advantages such as nutritional
enrichment and lessens reliance on inorganic fertilizers
by delivering vital nutrients (Bird et al., 2011). It also
helps in carbon sequestration and pollutant
immobilization (Gul et al., 2015).

Applying biochar to agricultural soils increases
crop output by promoting the storage of necessary
elements and improving fertility (Marris, 2006).
Because biochar increases the availability of nutrients
including phosphorus (P), potassium (K), magnesium
(Mg), calcium (Ca), sodium (Na), nitrogen (N), total
carbon (C), and organic carbon (OC), it is especially
advantageous for soils with limited ion-retention
capacity (Chan et al., 2007).). The kind and extent of
these alterations in soil properties affects the growth of
crop in biochar amended soils (Jeffery et al. 2017).

Crop leftovers, forest litter, animal waste, and
invasive weeds like lantana, which, despite its quick
growth, currently has no useful uses—can all be used
as feedstock for the synthesis of biochar. Pyrolysis is
an effective technique for turning these organic
resources into biochar. The kind of feedstock utilized
and the production circumstances determine the
particular characteristics of biochar as well as its
possible uses.

International Biochar Initiative (IBI)

Biochar is a solid that is created by carbonizing
biomass, according to the International Biochar
Initiative (IBI) (Lehmann, 2007). Biochar may be used
as a carbon sink or modification to lower greenhouse
carbon dioxide (CO2) emissions from decaying
biomass (Brewer et al., 2009; Lehmann et al., 2011).

One example that made biochar popular was the
theory that the Amazonian inhabitants used it, along
with other organic and household wastes, over
generations to transform the surface soil horizon into
Terra Preta, an extremely productive and rich soil.
Biochar's role in soil-building processes has piqued the
curiosity of many people (Lehmann et al., 2011).

Feedstocks for Biochar Production

The kind of the pretreatment procedure and the
overall effectiveness of the biochar manufacturing
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process are greatly impacted by the feedstock type
(Amarasinghe et al., 2016). Wood, fruit shells,
agricultural leftovers such stems, leaves, and seed
pods, green manure, sewage sludge, industrial and
municipal waste, and farm outputs are just a few of the
many biomass feedstocks that may be utilized to make
biochar (Duku et al., 2011; Wang et al., 2018). Algae
biomass has also become a sustainable feedstock
because of its high nitrogen content and ion exchange
capability. It produces biochar, which is a useful soil
amendment in agriculture (Yu et al., 2017).

Instead of being used directly as fertilizer, biochar
made from plant-based feedstocks is frequently
appreciated as a soil conditioner (Uchimiya et al.,
2010). When choosing feedstocks, other factors to take
into account include their price, accessibility, and lack
of contaminants such heavy metals (Rondon et al.,
2007). As a result, selecting the appropriate feedstock
is essential in guaranteeing that biochar will work as
intended.

Features of Biochar

The importance of biochar is significantly
influenced by its chemical and physical characteristics.
To comprehend its interactions in soil and assess its
possible advantages, proper characterisation is crucial.
Important characteristics of biochar, including as pH,
ash content, water-holding capacity, bulk density, pore
volume, and surface area, are greatly influenced by the
quality of the feedstock utilized (Hernandez-Mena et
al., 2014).

Furthermore, two important variables affecting the
physicochemical characteristics of biochar are the
pyrolysis temperature and time (Tag et al., 2016). For
example, biochar's surface area increases with increase
in pyrolysis temperatures (Ahmad et al., 2012; Zhang
et al., 2015). Accordingly, choosing the right pyrolysis
temperature necessitates striking a balance between
surface features and chemical properties (Chatterjee et
al., 2020).

The ideal temperature range for producing biochar
is usually 500 to 800°C. Biochar that controls nutrient
release is produced at lower pyrolysis temperatures,
while biochar that resembles activated carbon is
produced at higher temperatures (Day et al., 2005;
Ogawa et al., 2006; Chan et al., 2008). It is important
to keep in mind, though, that low-temperature biochar
could have hydrophobic surfaces, which could lower
the soil's ability to retain water.

Biochar Preparation

Biochar is produced and prepared using a variety
of procedures (Figure 1), such as (i) pyrolysis, (ii)
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microwave carbonization, (ii1) hydrothermal
carbonization, and (iv) torrefaction, all of which make
use of various heating methods. The thermochemical
breakdown of biomass in a low-oxygen (O,)
atmosphere is known as pyrolysis (Demirbas and Arin,
2002). Three forms of pyrolysis are distinguished by
temperature and duration: slow, transitional, and rapid
pyrolysis (Tripathi et al., 2016). Slow and transitional
pyrolysis have prolonged dwelling durations, spanning
from minutes to many hours or even days, which
makes them appropriate for producing biochar,
whereas rapid pyrolysis has a relatively limited
retention time.

Flash

Fig. 1 : Biochar Preparation Techniques

The stability of biochar is significantly influenced
by the temperature during pyrolysis. Biochar produced
at temperatures higher than 500°C usually has half-
lives of more than a millennium (Ippolito et al., 2020).
As the pyrolysis temperature rises, changes in
elemental composition may be seen, including the
ratios of carbon (C), hydrogen (H), oxygen (O), and
nitrogen (N) (Wang et al., 2018). According to
Domingues et al. (2017), increasing the pyrolysis
temperature from 350°C and 450°C to 750°C lowers
the cation exchange capacity (CEC), which in turn
lowers the nutrient-rich biochar's adsorptive ability.

Furthermore, it has been discovered that greater
pyrolysis temperatures increase the amount of ash in
biochar while decreasing its surface area and pore
volume (Rafiq et al., 2016). In conclusion, temperature
has a significant impact on the content, structure, and
functional groups of biochar. Thus, choosing the right
pyrolysis temperature is crucial for preparing biochar
of superior quality.
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Fig. 2 : Diagram of the pyrolysis process

The physical, chemical, and biological

characteristics of biochar
Physical Characteristics

According to Shenbagavalli and Mahimairaja
(2012), biochar is a stable, carbon-rich substance that
may persist in soil for thousands of years. Its
effectiveness as a soil amendment for enhancing soil
health and sequestering carbon is determined by the
kind of feedstock utilized and the pyrolysis method,
both of which have a substantial impact on its
characteristics. The physical characteristics of biochar
have several positive effects on the environment, such
as raising the pH of the soil, improving moisture
retention, encouraging the growth of helpful microbes,
boosting cation exchange capacity (CEC), and
conserving soil nutrients (Sohi er al., 2010). All of
these procedures work together to enhance the fertility
and condition of the soil (Ajema, 2018).

Biochar changes the physical and chemical
characteristics of soil, reducing bulk density and
compaction, improving aeration and CEC, and
changing the texture and structure of the soil.
Additionally, it makes it easier to restore deteriorated
soils. In comparison to other organic components in
soil, its large surface area, negative surface charge, and
charge density make it more efficient at absorbing
cations per unit of carbon, which can increase crop
yields (Liang et al., 2006; Lehmann, 2007).

Depending on the makeup and interactions of
minerals and organic matter, biochar can have both
direct and indirect effects on soil processes. It changes
the physical properties of soil, including density,
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packing, particle size, surface area, and pore size
distribution. These modifications affect the texture,
structure, porosity, and consistency of the soil, which
affects the passage of water and air in the root zone
and, in turn, the development of plants (Blanco-
Canqui, 2017). In addition to improving soil
permeability, aggregation, and workability, biochar's
porous structure helps retain moisture, which makes it
especially helpful in areas that are prone to drought.
Acidic soils are neutralized by its alkaline properties,
which removes restrictions on plant development
(Hammes and Schmidt, 2009).

Furthermore, biochar may trap CO, and O, in its
porous structure or adsorb them on its surface,
allowing gasses, microorganisms, and nutrients to be
retained. By doing this, nutrient leakage into water
bodies is decreased, protecting the ecosystem and
maintaining soil health.

Chemical Properties By enhancing nutrient
retention and lowering acidity through its liming
activity, which elevates soil pH, biochar improves soil
fertility (Lehmann ef al., 2006). It increases soil
productivity by adding minerals like potassium (K),
phosphorus (P), and micronutrients, or by retaining
nutrients from other sources. Even though biochar by
itself doesn't always have enough nutrients, it can help
crops perform better when combined with either
organic or inorganic fertilizers.

The delayed release of nutrients like carbon (C),
nitrogen (N), calcium (Ca), magnesium (Mg),
potassium (K), and phosphorus (P) that biochar
provides is one of its most advantageous qualities since
it enables plants to obtain nutrients over a longer
period of time (DeLuca et al., 2015). This gradual
release lowers nutrient leaching, lessens agricultural
contamination, and eliminates the need for regular
fertilizer treatments. The negative environmental
consequences of chemical fertilizers and pesticides are
also lessened by biochar's capacity to store nutrients
(Cao et al., 2018).

A wide variety of species, such as bacteria,
fungus, protozoa, nematodes, arthropods, and
earthworms, are supported by healthy soil. These
species find a home in biochar, which boosts
biodiversity and soil microbial activity (Slapakova et
al., 2018). By providing a haven for beneficial fungi
like arbuscular mycorrhizal fungi and microbial
communities, the micropores of biochar Ilessen
saprophyte competition and improve nutrient exchange
between fungus and plants (Saito and Marumoto,
2002).
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According to Krull er al. (2003), biochar's
stubborn character allows it to endure in soil for
thousands of years, with estimations ranging from
1,000 to 10,000 years and an average of about 5,000
years. However, because of its intricate structure,
evaluating its long-term stability is challenging
(Lehmann et al., 2006).

Additionally, biochar offers a haven for microbial
inoculants such Bacillus thuringiensis, Azospirillum
sp., Azotobacter sp., and Glomus fasciculatum,
Rhizobium sp., Trichoderma viride, Pseudomonas
fluorescens, and mosseae (Hazarika and Ansari, 2007).
Biochar increases nutrient absorption and stimulates
plant  development by cultivating  symbiotic
interactions between fungus and plants, especially
mycorrhizal fungi. It is a useful tool for sustainable soil
management because of its porous nature, which
facilitates these interactions (Glaser, 2007).

Biochar's Impact on Soil Properties

Effects of biochar on various soil properties viz.,
physical, chemical and biological is illustrated in figure
3.

Impact on soil physical properties
Impact on Soil Porosity

It has been demonstrated that applying biochar
improves soil porosity; however, the degree of
improvement varies depending on the kind of biochar
and the soil (Herath et al., 2013). Soil aeration, heat
transmission, and water flow are all improved by
increased porosity (Omondi et al., 2016). Overall soil
porosity is influenced by the relative contributions of
macro, micro, and mesopores, which differ based on
the type of soil and biochar (Githinji, 2014). Biochar
decreases saturated hydraulic conductivity (Ksaf) and
enhances water retention in sandy soils while
increasing Ksat in clayey soils to minimize runoff
(Edeh et al., 2020).

Impact on Bulk Density of Soil (BD)

Applying biochar has been shown to dramatically
lower soil bulk density; the more biochar applied, the
larger the reductions (Herath et al., 2013; Githinji,
2014). According to Liu er al. (2016), there is a
negative association between the addition of biochar
and soil BD, meaning that BD falls as biochar
concentration rises. Reducing BD can have positive
agronomic effects as it has a direct impact on soil
health, crop productivity, and plant development
(Githinji, 2014).
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Impact on the Aggregation of Soils

Because of its interactions with soil mineral
particles, biochar especially when produced at lower
temperatures plays a critical role in encouraging the
development of soil aggregates (Brodowski et al.,
2005). According to Briggs et al. (2012), biochar
carbon affects soil aggregation and associated
processes by interacting with both organic and
inorganic soil components. It has been demonstrated
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that biochar improves wet aggregate stability,
especially in sandy soils. According to Burrell et al.
(2016), its organic particles enhance the bonding of
bigger particles, which leads to soil aggregation in
coarse-textured soils as opposed to fine-textured soils.
Furthermore, biological, chemical, and physical
processes can cause biochar particles to surround
inorganic soil aggregates with a carbon-rich core (Hua
etal.,2014).

Maintains the soil structure
Improves the bulk density
Increases soil porosity
Improves the soil texture

= 9=

. Improves CEC

. Enhances WHC

. Increases pH

. Improves nutrient
availability

N =

o—) 1. Increases Microbial biomass
2. Scale up microbial activity
3. Enhances SOM production

Fig. 3 : Biochar's impact on different soil characteristics

Impact of Applying Biochar on Chemical

Characteristics

Biochar is a good soil amendment because it
significantly affects the chemical characteristics of the
soil (Lehmann et al., 2011). Biochar's high pH makes it
an excellent way to improve the pH of soil, especially
in acidic soils (Song et al., 2018). Ash content is the
main cause of this pH rise as it raises the pyrolysis
temperature and mineral makeup of the feedstock used
to make biochar (Rafiq et al., 2016).

Additionally, the use of biochar has been
associated with increased soil carbon reserves, which
can improve soil fertility, promote carbon
sequestration, improve nutrient retention, and
temporarily  stimulate native organic  carbon
mineralization (positive priming) all of which can
result in increased crop yields (Ouyang et al., 2014).
After applying biochar for four years, Zhan et al.
(2015) found that the soil's total nitrogen (N) increased
by 27.5%, its carbon (C) content grew by 75.5%, and
its peanut yield improved by 50.5%. According to a
number of studies, biochar can increase nitrogen

retention, decrease N leaching, and raise the total
amount of nitrogen in soil (Major et al., 2012).
Because of its porous structure, nitrate and ammonium
may be adsorbed, enhancing nitrogen immobilization
and decreasing ammonium volatilization, which
increases the amount of nitrogen available for plant
development (Rondon et al., 2007).

Additionally, biochar contributes to the recycling
of phosphorus (P) from sewage sludge and manure,
two agricultural wastes. Increased soil P availability is
a result of the high phosphorus concentration of
biochar's ash (Major et al., 2012; Zhai et al., 2015).
Nevertheless, the type of soil affects the availability of
phosphorus; biochar increases P availability in acidic
soils but may decrease it in alkaline soils because of
enhanced sorption (Chintala et al., 2014).

Furthermore, it has been discovered that applying
biochar improves the cation exchange capacity (CEC)
of soil. According to Major et al. (2012), this
improvement is usually followed by a decrease in
acidic cations and an increase in basic cations, which
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influences nutrient availability and may result in
increased soil productivity.

Impact of Applying Biochar
Characteristics

on Biological

Microbial activity has been a major focus of the
extensive research on the effects of biochar on soil
microbial populations. Biochar can improve microbial
populations by interacting with minerals and soil
organic matter (Zhang et al., 2014; Pokharel et al.,
2020). It is also a useful technique for enhancing soil
carbon sinks because to its resilience to degradation
and capacity to lower CO, emissions from soil organic
matter. By altering the availability of carbon, nitrogen,
and other soil characteristics, biochar changes the
biomass composition and microbial population (Zhang
etal.,2014).

Although the effects of biochar might differ based
on the kind of soil and application rate, its enormous
surface area creates an environment that encourages
enzymatic activity. Biochar, a labile carbon source,
stimulates microbial activity, which raises the activity
of soil enzymes (Ouyang et al., 2014). However,
research has indicated that phosphomonoesterase
activity can be decreased by applying biochar that
contains a large amount of inorganic phosphorus (Zhai
et al., 2015). According to Karhu et al. (2011), biochar
generally creates an environment that is conducive to
microbial populations, which increases the biological
activity of soil.

Four main ways that biochar affects mycorrhizal
associations were described by Warnock et al. (2007):
(i) changing nutrient availability by modifying soil
properties; (ii) affecting interactions between soil
microbes; (iii) detoxifying allelochemicals; and (iv)
offering defense against soil predators. Numerous
studies have reported increased mycorrhizal
colonization (Yamato et al., 2006; Solaiman et al.,
2010; Shen et al., 2016). Applying biochar has been
demonstrated to improve soil fertility and agricultural
yield, especially in nutrient-deficient soils (Xie et al.,
2013). The impacts on production in extremely rich
soils, however, vary; some studies even show growth
restriction. The kind of biochar feedstock and the
properties of the soil both affect how biochar affects
mycorrhizal relationships.

Soil fauna is also impacted by biochar. The
precise consequences of ingested biochar inside
earthworm systems are yet unknown, although
earthworms, for instance, may consume it while they
dig and eat. Depending on the kind of soil and the
properties of the feedstock, the reactions of soil fauna
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to the addition of biochar might range from neutral to
positive or negative (Lehmann et al., 2011).

Effect of Biochar on Crop Productivity

The forms of biochar dust, fine particles, and
coarse grains as well as the application techniques
surface application, top dressing, and drilling are the
two primary factors affecting the influence of biochar
on crop productivity. When assessing how biochar
affects crop performance and soil health, these
variables are crucial. Different levels of ash, which is
high in minerals that promote plant development, are
present in fresh biochar. This offers a temporary
benefit, allowing ash-rich biochar to be used as
fertilizer in the early phases until the mineral content is
exhausted. Research has indicated that the use of
biochar has a considerable impact on grain yield, dry
matter output, and net primary crop production (Chan
et al., 2008). The kind of soil and how biochar is
modified determine how successful it is. According to
El-Naggar et al. (2019), biochar typically exhibits
higher efficiency in medium-to-low fertility soils
compared to extremely fertile soils, leading to
considerable improvements in agricultural output.

In a multi-year study using a soybean (Glycine
max L.) and maize (Zea mays L.) cropping system,
Major et al. (2010) found that applying 20 t ha™ of
biochar did not increase maize yield in the first year. In
contrast to the control, yield increases of 28%, 30%,
and 140% were seen in the following three years.
Similar findings were made by Park et al. (2011), who
discovered that adding biochar at a rate of 1% (w/w)
considerably raised the dry biomass of Indian mustard
by 672% for roots and 452% for shoots. Chemically
modified chicken manure was the source of the biochar
that was utilized. These gains were ascribed to
improved nutritional availability, especially potassium
(K) and phosphorus (P), and decreased toxicity from
lead (Pb) and copper (Cu).

Biochar for Carbon Sequestration and Climate
Change Mitigation

Capturing and storing carbon to stop its escape
into the atmosphere is known as carbon sequestration
(Duku et al., 2011; Hu et al., 2020). Long-term carbon
storage and soil improvement are two advantages of
applying biochar to soils (Tenenbaum, 2009; Ennis et
al., 2012). Biochar is a promising tool for carbon
sequestration due to its ability to remain stable in the
soil for hundreds or even thousands of years (Yin et
al., 2022). Additionally, biochar helps mitigate climate
change by lowering emissions of nitrous oxide (N:O)
and methane (CH.) from agricultural soils (Gupta et
al., 2020). Compared to combustion (3%) and
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biological degradation (10-20% after 5-10 years),
biochar maintains more than 50% of the carbon from
its initial biomass (Lehmann et al., 2006).

The lifespan and nutrient-retention qualities of
biochar make it unique. Because it doesn't break down,
it improves soil fertility and structure over time.
Furthermore, according to Mensah and Frimpong
(2018), biochar dramatically improves soil pH,
moisture retention, cation exchange capacity (CEC),
and microbial activity.

Zhang et al. (2010) showed how biochar can
lower emissions of CH, and N,O, two major causes of
global warming. Additionally, biochar applications
(2% to 60% by weight) decreased CO, emissions,
lowered N,O generation (beyond 20% application
rates), and enhanced methane oxidation, according to
Spokas et al. (2009).

Additionally, biochar has disease-suppressive
qualities that may help reduce pathogen-caused soil-
borne illnesses. This suppression process is aided by
calcium compounds and enhancements to the physical,
chemical, and biological characteristics of the soil
(Ogawa, 2009). Research has demonstrated the
efficacy of biochar in combating airborne and soil-
borne illnesses such powdery mildew, Botrytis cinerea,
and Rhizoctonia solani, as well as Fusarium species
and Phytophthora (Bonanomi et al., 2015). For
example, using biochar made from citrus wood
improved crops like strawberries (Fragaria X
ananassa), peppers (Capsicum annuum), and tomatoes
(Lycopersicon esculentum) resistance to gray mold
(Botrytis cinerea).

Despite the paucity of studies on biochar's ability
to inhibit soil-borne pathogens, Elmer et al. (2010)
found that it may be able to manage certain illnesses.
For instance, at treatment rates of 0.32%, 1.60%, and
3.20% (w/w), biochar decreased root rot disease and
enhanced plant biomass in asparagus soils afflicted
with Fusarium. Likewise, Fusarium root rot in
asparagus crops has been successfully prevented by
using charcoal enhanced with mycorrhizal fungus
(Thies and Rillig, 2009).

Biochar is a promising and versatile approach to
improving soil health, encouraging sustainable
agriculture, and tackling environmental issues like
climate change. By improving soil fertility, structure,
and water retention, its application increases crop
yields while lowering the demand for inorganic
fertilizers. Furthermore, biochar is an essential strategy
for reducing greenhouse gas emissions because of its
capacity to store carbon in the soil. However,
addressing obstacles pertaining to production prices,
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application methods, and regional variations in efficacy
is necessary before it can be widely used. To maximize
biochar synthesis and application techniques for
various agricultural systems, more research and
development is required. All things considered, biochar
has a great deal of promise for incorporating into
sustainable  farming methods and enhancing
agricultural and environmental resilience over the long
run.
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